987 resultados para Biodiesel. Gas Chromatography. Castor Oil Biodiesel. Glycerin. MethylEsters. Methanol
Resumo:
Organic geochemical and stable isotope investigations were performed to provide an insight into the depositional environments, origin and maturity of the organic matter in Jurassic and Cretaceous formations of the External Dinarides. A correlation is made among various parameters acquired from Rock-Eval, gas chromatography-mass spectrometry data and isotope analysis of carbonates and kerogen. Three groups of samples were analysed. The first group includes source rocks derived from Lower Jurassic limestone and Upper Jurassic ``Leme'' beds, the second from Upper Cretaceous carbonates, while the third group comprises oil seeps genetically connected with Upper Cretaceous source rocks. The carbon and oxygen isotopic ratios of all the carbonates display marine isotopic composition. Rock-Eval data and maturity parameter values derived from biomarkers define the organic matter of the Upper Cretaceous carbonates as Type I-S and Type II-S kerogen at the low stage of maturity up to entering the oil-generating window. Lower and Upper Jurassic source rocks contain early mature Type III mixed with Type IV organic matter. All Jurassic and Cretaceous potential source rock extracts show similarity in triterpane and sterane distribution. The hopane and sterane distribution pattern of the studied oil seeps correspond to those from Cretaceous source rocks. The difference between Cretaceous oil seeps and potential source rock extracts was found in the intensity and distribution of n-alkanes, as well as in the abundance of asphaltenes which is connected to their biodegradation stage. In the Jurassic and Cretaceous potential source rock samples a mixture of aromatic hydrocarbons with their alkyl derivatives were indicated, whereas in the oil seep samples extracts only asphaltenes were observed.
Resumo:
Diplomityössä tutkittiin kuuman pyrolyysihöyryn puhdistamista haisevista ja kevyistä haihtuvista yhdisteistä. Työn kirjallisuusosassa selvitettiin pyrolyysiöljyn kannattavuutta uusiutuvana energialähteenä. Lisäksi eri pesurityyppejä tarkasteltiin ja ja vertailtiin. Työn kokeellisessa osassa käytettiin kahta erilaista koelaitteistoa. Tuotteen talteenotossa vertailtiin reaktorilämpötilan ja raaka-aineen kosteuden vaikutusta pyrolyysisaantoihin. Komponenttien talteenotossa tutkittiin epästabiilien ja pistävän hajuisten yhdisteiden poistamista kuumasta pyrolyysihöyrystä. Raaka-aineena käytettiin kuusen metsätäh-dehaketta, joka sisältää runsaasti neulasia ja kaarnaa. Kokeet toteutettiin lämpötila-alueella 460 - 520 °C. Koelaitteistot koostuivat kaasun (N2) syöttöjärjestelmään kytketystä kuumasta ja kyl-mästä puolesta. Tuotteen talteenotossa kuuma pyrolyysihöyry jäähdytettiin ja otettiin talteen. Komponenttien talteenotossa tuote kerättiin suodattimelle ja metyleeniklo-ridiloukkuun. Tuotteiden koostumukset analysoitiin kaasukromatokrafilla. Korkeimmat orgaaniset saannot saatiin 480 °C reaktorilämpötilalla ja 8-9 p-% raaka-ainekosteudella. Pyrolyysiveden määrä putosi raaka-aineen kosteutta nostettaessa. Eri reaktorilämpötiloilla ja raaka-ainekosteuksilla ei ollut vaikutusta hiiltosaantoihin. Kaasusaannot (pääosin CO2, CO ja hiilivedyt) olivat noin 10 p-%. Komponenttien talteenotossa suodatin tukkeutui matalissa (< 250 °C) lämpötiloissa. Suodattimelle jäänyt materiaali oli pääosin neulasista ja kaarnasta peräisin olevia uuteaineita (pääosin hartsi- rasvahappoja) ja sokereita. Korkeimmissa lämpötiloissa (> 250 °C) uuteaineet läpäisivät suodattimen paremmin. 250 ja 300 °C:n lämpötiloissa suuri määrä lyhytketjuisia helposti haihtuvia epästabiileja ja haisevia yhdisteitä (ketoneja, furaani- ja furfuraalijohdannaisia jne.) jäi metyleenikloridi- ja metanoliloukkuihin.
Resumo:
In the present work a polyurethane polymer derived from castor oil was used as stationary phase for capillary gas chromatography. The polymer was obtained by reaction of hydroxylated compound and isocynate (NCO), forming urethane. Columns of 7 m x 0,25 mm were then coated with this stationary phase (film thickness of 0,25 µm) using static coating method. The Grob test was also performed. Samples of essential oil of the Aniba duckei Korstermans was then analysed in POLYH4-MD capillary column in order to evaluate its chromatographic perfomance. The linalool was found to be the major component and has been used as compound of departure for many important syntheses. Results show that the experimental columns give higher resolution and can be employed for analysis of essentials oils.
Resumo:
The essential oils from leaves (sample A) and flowers (sample B) of Aeolanthus suaveolens Mart. ex Spreng were obtained by hydrodistillation and analyzed by GC, GC-MS, and chiral phase gas chromatography (CPGC). Six compounds have been identified from the essential oils, representing ca 94.3 and 93% of the oils corresponding to samples A and B, respectively. The major constituents of samples A and B essential oils were respectively, linalool (34.2%/34.9%), (-)-massoialactone (25.9%/17.0%) and (E)-beta-farnesene (25.4%/29.1%). The enantiomeric distribution of the monoterpene linalool was established by analysis on heptakis- (6-O-methyl-2,3-di-O-pentyl)-beta-cyclodextrin capillary column. The antimicrobial activity of the essential oil from leaves and isolated compounds was also evaluated.
Resumo:
The chemical composition of the essential oil and hydrolates of Campomanesia viatoris Landrum were investigated by gas chromatography/mass spectrometry (GC/MS) and a GC flame ionization detector (GC-FID). The major constituents were tasmanone (70.50, essential oil; 74.73%, hydrolate), flavesone (12.77, essential oil; 12.24%, hydrolate) and agglomerone (6.79, essential oil; 10.84%, hydrolate). Tasmonone was isolated and its structure was characterized by spectrometric analysis, specifically 1D and 2D nuclear magnetic resonance (NMR) and mass spectrometry (MS). These findings supports the quimiotaxonomic relationship with Campomanesia and Eucalyptus genera.
Resumo:
The study was done to identify the most active fungitoxic component of cinnamon bark (Cinnamomum zeylanicum) oil that can be used as a marker for standardization of cinnamon extract or oil based natural preservative of stored seeds. Aspergillus flavus and A. ruber were used as test fungi. The hexane extracted crude oil and the hydro-distilled essential oil from cinnamon bark had complete growth inhibition concentration (CGIC) of 300 and 100 µl/l, respectively. Both oils produced three fractions on preparative thin layer silica-gel chromatography plates. The fraction-2 of either oil was the largest and most active, with CGIC of 200 µl/l, but the fungitoxicity was also retained in the other two fractions. The fraction-1 and 3 of the crude oil reduced growth of both the fungal species by 65%, and those of distilled oil by 45% at 200 µl/l. The CGIC of these fractions from both the sources was above 500 µl/l. The gas chromatography and mass spectrometry (GC-MS) of the fraction-2 of the hexane extract revealed that it contained 61% cinnamaldehyde, 29% cinnamic acid, and two minor unidentified compounds in the proportion of 4% and 6%. The GC-MS of the fraction-2 of the distilled oil revealed that it contained 99.1% cinnamaldehyde and 0.9% of an unidentified compound. The CGIC of synthetic cinnamaldehyde was 300 µl/l and that of cinnamic acid above 500 µl/l. The 1:1 mixture of cinnamaldehyde and cinnamic acid had CGIC of 500 µl/l. The data revealed that cinnamaldehyde was the major fungitoxic component of hexane extract and the distilled essential oil of cinnamon bark, while other components have additive or synergistic effects on total fungitoxicity. It is suggested that the natural seed preservative based on cinnamon oil can be standardized against cinnamaldehyde.
Resumo:
The aim of the present study was the assessment of volatile organic compounds produced by Sporidiobolus salmonicolor (CBS 2636) using methyl and ethyl ricinoleate, ricinoleic acid and castor oil as precursors. The analysis of the volatile organic compounds was carried out using Head Space Solid Phase Micro-Extraction (HS - SPME). Factorial experimental design was used for investigating extraction conditions, verifying stirring rate (0-400 rpm), temperature (25-60 ºC), extraction time (10-30 minutes), and sample volume (2-3 mL). The identification of volatile organic compounds was carried out by Gas Chromatography with Mass Spectrum Detector (GC/MSD). The conditions that resulted in maximum extraction were: 60 ºC, 10 minutes extraction, no stirring, sample volume of 2.0 mL, and addition of saturated KCl (1:10 v/v). In the bio-production of volatile organic compounds the effect of stirring rate (120-200 rpm), temperature (23-33 ºC), pH (4.0-8.0), precursor concentration (0.02-0.1%), mannitol (0-6%), and asparagine concentration (0-0.2%) was investigated. The bio-production at 28 ºC, 160 rpm, pH 6,0 and with the addition of 0.02% ricinoleic acid to the medium yielded the highest production of VOCs, identified as 1,4-butanediol, 1,2,2-trimethylciclopropilamine, beta-ionone; 2,3-butanodione, pentanal, tetradecane, 2-isononenal, 4-octen-3-one, propanoic acid, and octadecane.
Resumo:
The fish industry generates high volume of waste from fish oil that can have the extraction of its lipids used as nutraceuticals and foods. The objective of this study was to produce unsaturated fatty acids from industrialized fish oil by means of a differentiated hydrolysis process. The samples used were crude fish oil obtained from Campestre industry and characterized through physical-chemical parameters, according to AOCS: acidity, peroxide, saponification, iodine and percentage of free fatty acids and also obtained the fatty acid profile through derivatization method for gas chromatography. The results obtained for the oleochemical indices for refined oil were similar to the data found on the literature. The content of polyunsaturated fatty acids (PUFA) was found of 32,78%, with 9,12% of docosahexaenoic (DHA) and 10,36% of eicosapentaenoic (EPA), regarding monounsaturated fatty acids (MUFA) content was of 30,59% in the hydrolyzed fish oil in relation to refined (20,06%). Thus, it can be concluded that the hydrolysis process used for oils from fish-waste was satisfactory on the production of absolute yield of lipids in the process and significant preservation on the percentages of EPA and DHA, interesting on the production of nutraceuticals and nutrition of aquatic animals, including shrimp in captivity.
Characterization of constituents, quality and stability of pomegranate seed oil (Punica granatum L.)
Resumo:
Abstract This study aimed to characterize pomegranate seed oil and evaluate its quality and stability parameters against those of linseed oil. The profile of fatty acids and phytosterols and the content of tocopherols were analyzed by gas chromatography and high performance liquid chromatography, respectively. The quality of both oils was assessed as recommended by the American Oil Chemists' Society (AOCS) and stability was evaluated using 2,2-diphenyl-1-picrylhydrazyl (DPPH), β-carotene bleaching (coupled oxidation of β-carotene/linoleic acid) and Rancimat® assays. While α-linolenic acid (52%) was the most abundant fatty acid in linseed oil (LO), punicic acid (55%) was highest in pomegranate seed oil (PSO). Tocopherols and phytosterols (175 and 539 mg/100 g, respectively) were greater in PSO than in LO (51 and 328 mg/100 g, respectively). Both oils met quality standards. The β-carotene bleaching and the DPPH assays showed greater oxidative stability for PSO than for LO. The Rancimat® method, on the other hand, indicated low stability for both oils.
Resumo:
A study was undertaken' to determine the applicability of gas liquid chromatography to the simultaneous analysis of sugars and sugar phosphates from biological samples. A new method of silylation involving dimethylsulfoxide, hexamethyldisilazane, trimethylchlorosilane and cyclohexane (1:0.2:0.1:1) which rapidly silylated sugars and sugar phosphates was developed. Subsequent chromatography on a 5% SE-52 column gave good resolution of the sugar and sugar phosphate samples. Sugar phosphates decomposed during chromatography and were lost at the 7 x 10-3 ~mole level. Acidic ethanol extraction of yeast samples revealed background contamination from the yeast sample, the culture medium and the silylation reagents which would further limit the level of detection obtainable with the glc for sugars in biological samples to the 3 x 10-4 ~mole level.
Resumo:
Time dependent gas hold-up generated in the 0.3 and 0.6 m diameter vessels using high viscosity castor oil and carboxy methyl cellulose (CMC) solution was compared on the basis of impeller speed (N) and gas velocity (V-G). Two types of hold-up were distinguished-the hold-up due to tiny bubbles (epsilon(ft)) and total hold-up (epsilon(f)), which included large and tiny bubbles. It was noted that vessel diameter (i.e. the scale of operation) significantly influences (i) the trends and the values of epsilon(f) and epsilon(ft), and (ii) the values of tau (a constant reflecting the time dependency of hold-up). The results showed that a scale independent correlation for gas hold-up of the form epsilon(f) or epsilon(ft) = A(N or P-G/V)(a) (V-G)(b), where "a" and "b" are positive constants is not appropriate for viscous liquids. This warrants further investigations into the effect of vessel diameter on gas hold-up in impeller agitated high viscosity liquids (mu or mu(a) > 0.4 Pa s). (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
In this Study, volatile oxidation compounds formed in a commercial conjugated linoleic acid (CLA)-rich oil were quantified and results compared to those found in safflower oil (rich in linoleic acid, LA). Intact oil samples and pure triacylglycerols obtained following elimination of tocopherols and minor compounds were oxidised at 60 degrees C, and volatile oxidation compounds were analysed by solid phase microextraction-gas chromatography with flame ionisation detector and mass spectrometer. Results showed that while, as expected, hexanal was the major volatile oxidation compound found in oil and triacylglycerols rich in LA, both hexanal and heptanal equally were the most abundant compounds in oil and triacylglycerols rich in CLA. Besides, samples rich in CLA also showed significantly high quantities of trans-2-octenal and trans-2-nonenal and the latter, along with heptanal, were absent in samples rich in LA. Results for CLA samples were not easy to interpret since major volatiles found are not expected from theoretically stable hydroperoxides formed in CLA and could in part derive from dioxetanes coming from 1,2-cycloadclitions of CIA with oxygen. Overall, results obtained support evidence that oxidation mechanisms of CLA may differ than those of LA. Also, it was concluded that heptanal determination could serve as a useful marker of oxidation progress in CLA-rich oils. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
THE OXIDATIVE STABILITY OF OIL-IN-WATER EMULSIONS, CONTAINING BOVINE SERUM ALBUMIN (BSA) AND VIRGIN OLIVE OIL PHENOLIC COMPOUNDS, WAS STUDIED BY THE DETERMINATION OF THE FORMATION OF VOLATILE OXIDATION PRODUCTS. FOUR OIL-IN-WATER EMULSIONS WITH AND WITHOUT PHENOLS ISOLATED FROM VIRGIN OLIVE OIL AND BSA WERE PREPARED. THESE MODEL SYSTEMS WERE STORED AT 60 degrees C TO ACCELERATE LIPID OXIDATION. VOLATILE OXIDATION PRODUCTS WERE MONITORED EVERY THREE DAYS BY HEADSPACE SOLID-PHASE MICROEXTRACTION COUPLED WITH GAS CHROMATOGRAPHY. ALTHOUGH INDIVIDUALLY OLIVE OIL PHENOLIC COMPOUNDS AND BSA SHOWED A SIGNIFICANT ANTIOXIDANT ACTIVITY, THE COMBINATION OF THESE COMPONENTS SHOWED A VERY GOOD SYNERGY, QUANTIFIED AS 127%. IN FACT, THE EMULSION CONTAINING BOTH PHENOLIC COMPOUNDS AND BSA SHOWED A VERY LOW LEVEL OF OXIDATIVE DETERIORATION AFTER 45 DAYS STORAGE.
Resumo:
Virgin olive oil is valued for its flavor, but unacceptable off-flavors may develop on storage in food products containing this oil due to oxidation. The oxidative stability of oil-in-water emulsions containing bovine serum albumin (BSA) and virgin olive oil phenolic compounds was studied. Four oil-in-water emulsions with and without BSA and phenols isolated from virgin olive oil were prepared. These model systems were stored at 60 degrees C to speed up lipid oxidation. Primary and secondary oxidation products were monitored every three days. Peroxide values and conjugated diene contents were determined as measures of the primary oxidation products. p-Anisidine values and volatile compounds were determined as measures of the secondary oxidation products. This latter determination was carried out by headspace solid-phase microextraction coupled with gas chromatography. Although olive oil phenolic compounds and BSA contributed some antioxidant activity when present as individual additives, the combination of BSA with phenols in an emulsion showed 58-127% synergy, depending on which analytical method was used in the calculation. The emulsion containing phenolic compounds and BSA showed a low level of deterioration after 45 days of storage at 60 degrees C.
Resumo:
BACKGROUND: Carriers of the apolipoprotein E ɛ4 (APOE4) allele are lower responders to a docosahexaenoic acid (DHA) supplement than are noncarriers. This effect could be exacerbated in overweight individuals because DHA metabolism changes according to body mass index (BMI; in kg/m²). OBJECTIVES: We evaluated the plasma fatty acid (FA) response to a DHA-rich supplement in APOE4 carriers and noncarriers consuming a high-saturated fat diet (HSF diet) and, in addition, evaluated whether being overweight changed this response. DESIGN: This study was part of the SATgenɛ trial. Forty-one APOE4 carriers and 41 noncarriers were prospectively recruited and consumed an HSF diet for 8-wk followed by 8 wk of consumption of an HSF diet with the addition of DHA and eicosapentaenoic acid (EPA) (HSF + DHA diet; 3.45 g DHA/d and 0.5 g EPA/d). Fasting plasma samples were collected at the end of each intervention diet. Plasma total lipids (TLs) were separated into free FAs, neutral lipids (NLs), and phospholipids by using solid-phase extraction, and FA profiles in each lipid class were quantified by using gas chromatography. RESULTS: Because the plasma FA response to the HSF + DHA diet was correlated with BMI in APOE4 carriers but not in noncarriers, the following 2 groups were formed according to the BMI median: low BMI (<25.5) and high BMI (≥25.5). In response to the HSF + DHA diet, there were significant BMI × genotype interactions for changes in plasma concentrations of arachidonic acid and DHA in phospholipids and TLs and of EPA in NLs and TLs (P ≤ 0.05). APOE4 carriers were lower plasma responders to the DHA supplement than were noncarriers but only in the high-BMI group. CONCLUSIONS: Our findings indicate that apolipoprotein E genotype and BMI may be important variables that determine the plasma long-chain PUFA response to dietary fat manipulation. APOE4 carriers with BMI ≥25.5 may need higher intakes of DHA for cardiovascular or other health benefits than do noncarriers