777 resultados para Biodegradable polymer


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fiber reinforced polymer (FRP) composite materials are making an entry into the construction market in both buildings and pavements. The application to pavements so far has come in the form of joint reinforcement (dowels and tie bars). FRP resistance to salt corrosion in dowels has made it an alternative to standard epoxy-coated steel dowels for pavements. Iowa State University has completed a large amount of laboratory research to determine the diameter, spacing, and durability of FRP dowels. This report documents the performance of elliptical FRP dowels installed in a field situation. Ten joints were monitored in three consecutive test sections, for each of three dowel spacings (10, 12, and 15 inches) including one instrumented dowel in each test section. The modulus of dowel bar support was determined using falling weight deflectometer (FWD) testing and a loaded crawl truck. FWD testing was also used to determine load transfer efficiency across the joint. The long-term performance and durability of the concrete was also evaluated by monitoring faulting and joint opening measurements and performing visual distress surveys at each joint. This report also contains similar information for standard round, medium elliptical, and heavy elliptical steel dowels in a portion of the same highway. In addition, this report provides a summary of theoretical analysis used to evaluate joint differential deflection for the dowels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Huntington's disease (HD) is a monogenic neurodegenerative disease that affects the efferent neurons of the striatum. The protracted evolution of the pathology over 15 to 20 years, after clinical onset in adulthood, underscores the potential of therapeutic tools that would aim at protecting striatal neurons. Proteins with neuroprotective effects in the adult brain have been identified, among them ciliary neurotrophic factor (CNTF), which protected striatal neurons in animal models of HD. Accordingly, we have carried out a phase I study evaluating the safety of intracerebral administration of this protein in subjects with HD, using a device formed by a semipermeable membrane encapsulating a BHK cell line engineered to synthesize CNTF. Six subjects with stage 1 or 2 HD had one capsule implanted into the right lateral ventricle; the capsule was retrieved and exchanged for a new one every 6 months, over a total period of 2 years. No sign of CNTF-induced toxicity was observed; however, depression occurred in three subjects after removal of the last capsule, which may have correlated with the lack of any future therapeutic option. All retrieved capsules were intact but contained variable numbers of surviving cells, and CNTF release was low in 13 of 24 cases. Improvements in electrophysiological results were observed, and were correlated with capsules releasing the largest amount of CNTF. This phase I study shows the safety, feasibility, and tolerability of this gene therapy procedure. Heterogeneous cell survival, however, stresses the need for improving the technique.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fiber composite materials (FRP) are making an entry into the construction market in both buildings and pavements. The application to pavements comes in the form of joint reinforcement (dowels and tie bars) to date. FRP resistance to salt corrosion in dowels has made it an alternative to standard epoxy coated dowels for pavements. Iowa State University has completed a large amount of laboratory research into the determination of diameter, spacing, and durability of FRP dowels. This report documents the installation of a series of FRP elliptical-shaped dowel joints (including instrumented units) in a field situation and the beginning of a two-year study to compare laboratory results to in-service pavements. Ten joints were constructed for each of three dowel spacings of 10, 12, and 15 inches ( 254, 305, and 381 mm) with one instrumented joint in each test section. The instrumented bars will be load tested with a loaded truck and FWD testing.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A 9-month-old girl presented with life-threatening acute respiratory failure 1 week after the surgical correction of a double aortic arch, which was due to a severe bulging of the pars membranacea into the lumen of the trachea that produced a complete obstruction of the lower trachea. Under cardiopulmonary bypass, a Y-shaped posterior biodegradable splint was placed behind the trachea and sutured to the posterior trachea, and a simultaneous right aortic arch aortopexy was performed. Thereafter, the child recovered normal respiratory function. Follow-up bronchoscopy showed a posterior dip at the splint level and an asymptomatic persistent posterior compression of the right main bronchus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: Poly(epsilon-caprolactone) (PCL) is a biodegradable and biocompatible polymer that presents a very low degradation rate, making it suitable for the development of long-term drug delivery systems. The objective of this pilot study is to evaluate the feasibility and characteristics of PCL devices in the prolonged and controlled intravitreous release of dexamethasone. METHODS: The in vitro release of dexamethasone was investigated and the implant degradation was monitored by the percent of mass loss and by changes in the surface morphology. Differential scanning calorimetry was used to evaluate stability and interaction of the implant and the drug. The short-term tolerance of the implants was studied after intravitreous implantation in rabbit eye. Results: PCL implant allows for a controlled and prolonged delivery of dexamethasone since it releases 25% of the drug in 21 weeks. Its low degradation rate was confirmed by the mass loss and scanning electron microscopy studies. Preliminary observations show that PCL intravitreous implants are very well tolerated in the rabbit eye. CONCLUSION: This study demonstrates the PCL drug delivery systems allowed to a prolonged release of dexamethasone in vitro. The implants demonstrated a strikingly good intraocular short-term tolerance in rabbits eyes. The in vitro and preliminary in vivo studies tend to show that PCL implants could be of interest when long-term sustained intraocular delivery of corticosteroids is required.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has been already demonstrated that thyroid hormone (T3) is one of the most important stimulating factors in peripheral nerve regeneration. We have recently shown that local administration of T3 in silicon tubes at the level of the transected rat sciatic nerve enhanced axonal regeneration and improved functional recovery. Silicon, however, cannot be used in humans because it causes a chronic inflammatory reaction. Therefore, in order to provide future clinical applications of thyroid hormone in human peripheral nerve lesions, we carried out comparative studies on the regeneration of transected rat sciatic nerve bridged either by biodegradable P(DLLA-(-CL) or by silicon nerve guides, both guides filled with either T3 or phosphate buffer. Our macroscopic observation revealed that 85% of the biodegradable guides allowed the expected regeneration of the transected sciatic nerve. The morphological, morphometric and electrophysiological analysis showed that T3 in biodegradable guides induces a significant increase in the number of myelinated regenerated axons (6862 +/- 1831 in control vs. 11799 +/- 1163 in T3-treated). Also, T3 skewed the diameter of myelinated axons toward larger values than in controls. Moreover, T3 increases the compound muscle action potential amplitude of the flexor and extensor muscles of the treated rats. This T3 stimulation in biodegradable guides was equally well to that obtained by using silicone guides. In conclusion, the administration of T3 in biodegradable guides significantly improves sciatic nerve regeneration, confirming the feasibility of our technique to provide a serious step towards future clinical application of T3 in human peripheral nerve injuries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

UV−excimer laser photoablation was used, in combination with surface blocking techniques, to pattern proteins on the surfaces of polyimide and poly(ethylene terephthalate). This technique involves physical adsorption of avidin through laser-defined openings in low-temperature laminates or adsorbed protein blocking layers. Visualization of biomolecular patterns were monitored using avidin and fluorescein-labeled biotin as a model receptor−ligand couple. Adsorbed proteins could be shown to bind to UV-laser-treated polymer surfaces up to three times higher than on commercially available polymers. UV-laser photoablation was also used for the generation of three-dimensional structure, which leads to the possibility of biomolecule patterning within polymer-based microanalytical systems. The simplicity and easy handling of the described technique facilitate its application in microdiagnostic devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polyhydroxyalkanoates (PHAs) are bacterial polyesters having the properties of biodegradable thermoplastics and elastomers. Synthesis of PHAs has been demonstrated in transgenic plants. Both polyhydroxybutyrate and the co-polymer poly(hydroxybutyrate-co-hydroxyvalerate) have been synthesized in the plastids of Arabidopsis thaliana and Brassica napus. Furthermore, a range of medium-chain-length PHAs has also been produced in plant peroxisomes. Development of agricultural crops to produce PHA on a large scale and at low cost will be a challenging task requiring a coordinated and stable expression of several genes. Novel extraction methods designed to maximize the use of harvested plants for PHA, oil, carbohydrate, and feed production will be needed. In addition to their use as plastics, PHAs can also be used to modify fiber properties in plants such as cotton. Furthermore, PHA can be exploited as a novel tool to study the carbon flux through various metabolic pathways, such as the fatty acid beta-oxidation cycle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two types of hydrogel microspheres have been developed. Fast ionotropic gelation of sodium alginate (Na-alg) in the presence of calcium ions was combined with slow covalent cross-linking of poly(ethylene glycol) (PEG) derivatives. For the first type, the fast obtainable Ca-alg hydrogel served as spherical matrix for the simultaneously occurring covalent cross-linking of multi-arm PEG derivative. A two-component interpenetrating network was formed in one step upon extruding the mixture of the two polymers into the gelation bath. For the second type, heterobifunctional PEG was grafted onto Na-alg prior to gelation. Upon extrusion of the polymer solution into the gelation bath, fast Ca-alg formation ensured the spherical shape and was accompanied by cross-linker-free covalent cross-linking of the PEG side chains. Thus, one-component hydrogel microspheres resulted. We present the physical properties of the hydrogel microspheres and demonstrate the feasibility of cell microencapsulation for both types of polymer networks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Surface characteristics (area, chemical reactivity) play an important role in cell response to nanomaterials. The aim of this study was to evaluate the oxidative and inflammatory effects of multi−wall carbon nanotubes (MWCNT) uncoated (P0) or coated with carboxylic polyacid or polystyrene polybutadiene polymetacrylate of methyl polymers (P1 and P2 respectively) on murine macrophages (RAW 264.7 cell line). Carbon black nanoparticles (CB, diameter 95 nm) and crocidolite fibers (diameter: 80 nm, length: < 10 μm) were used as controls. Surface functional groups present on MWCNTs were analyzed by Knudsen flow reactor. The amount of acidic sites was P1> P0> P2, for basic sites was P0> P1>> P2 and for oxidizable sites was P0> P2> P1. In contact with cells, P2 formed smaller aggregates than P0 and P1, which were of similar size. Optical microscopy showed the formation of vacuoles after exposure only to P0, P1 and crocidolite. Incubation of cells with P0, P1 and crocidolite fibers induced a significant and similar decrease in metabolic activity, whereas P2 and CB had no effect. Cell number and membrane permeability were unmodified by incubation with the different particles. Incubation of macrophages with P0, P1 and crocidolite induced a dose− and time−dependent increase in mRNA expression of oxidative stress marker (HO−1, GPX1) and inflammatory mediators (TNF−a, MIP−2). No such responses were observed with P2 and CB. In conclusion, MWCNT coated with a carboxylic polyacid polymer exerted similar oxidative and inflammatory effects to uncoated MWCNT. By contrast, no such effects were observed with MWCNT coated with a polystyrene−based polymer. This kind of coating could be useful to decrease MWCNT toxicity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A mechanism of extraction of tubular membranes from a lipid vesicle is presented. A concentration gradient of anchoring amphiphilic polymers generates tubes from budlike vesicle protrusions. We explain this mechanism in the framework of the Canham-Helfrich model. The energy profile is analytically calculated and a tube with a fixed length, corresponding to an energy minimum, is obtained in a certain regime of parameters. Further, using a phase-field model, we corroborate these results numerically. We obtain the growth of tubes when a polymer source is added, and the budlike shape after removal of the polymer source, in accordance with recent experimental results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A form of increasing the efficiency of N fertilizer is by coating urea with polymers to reduce ammonia volatilization. The aim of this study was to evaluate the effect of polymer-coated urea on the control of ammonia volatilization, yield and nutritional characteristics of maize. The experiment was carried out during one maize growing cycle in 2009/10 on a Geric Ferralsol, inUberlândia, MG, Brazil. Nitrogen fertilizers were applied as topdressing on the soil surface in the following urea treatments: polymer-coated urea at rates of 45, 67.5 and 90 kg ha-1 N and one control treatment (no N), in randomized blocks with four replications. Nitrogen application had a favorable effect on N concentrations in leaves and grains, Soil Plant Analysis Development (SPAD) chlorophyll meter readings and on grain yield, where as coated urea had no effect on the volatilization rates, SPAD readings and N leaf and grain concentration, nor on grain yield in comparison to conventional fertilization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Velocity has been measured as a function of time for propagating crack tips as water is injected into solutions of end-capped associating polymers in a rectanguar Hele-Shaw cell. Measurements were performed for flows with different values of cell gap, channel width, polymer molecular weight, and polymer concentration. The condition for the onset of fracturelike behavior is well described by a Deborah number which uses the shear-thinning shear rate of the polymer solution as a characteristic frequency for network relaxation. At low molecular weight, the onset of fracturelike pattern evolution is accompanied by an abrupt jump in tip velocity, followed by a lower and approximately constant acceleration. At high molecular weight, the transition to fracturelike behavior involves passing through a regime that may be understood in terms of stick-slip dynamics. The crack-tip wanders from side to side and fluctuates (in both speed and velocity along the channel) with a characteristic frequency which depends linearly on the invading fluid injection rate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study fracturelike flow instabilities that arise when water is injected into a Hele-Shaw cell filled with aqueous solutions of associating polymers. We explore various polymer architectures, molecular weights, and solution concentrations. Simultaneous measurements of the finger tip velocity and of the pressure at the injection point allow us to describe the dynamics of the finger in terms of the finger mobility, which relates the velocity to the pressure gradient. The flow discontinuities, characterized by jumps in the finger tip velocity, which are observed in experiments with some of the polymer solutions, can be modeled by using a nonmonotonic dependence between a characteristic shear stress and the shear rate at the tip of the finger. A simple model, which is based on a viscosity function containing both a Newtonian and a non-Newtonian component, and which predicts nonmonotonic regions when the non-Newtonian component of the viscosity dominates, is shown to agree with the experimental data.