986 resultados para Binary codes


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new composition path, Xi-Xj=constant, is suggested for the semi-empirical calculation of the thermodynamic properties of ternary ‘substitutional’ solutions from binary data, when the binary systems show deviations from the regular solution model. A comparison is made between the results obtained for integral and partial properties using this composition path and those calculated employing other composition paths suggested in literature. It appears that the best estimate of the ternary properties is obtained when binary data at compositions closest to the ternary composition are used.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Equations for the computation of integral and partial thermodynamic properties of mixing in quarternary systems are derived using data on constituent binary systems and shortest distance composition paths to the binaries. The composition path from a quarternary composition to the i-j binary is characterized by a constant value of (Xi − Xj). The merits of this composition path over others with constant values for View the MathML source or Xi are discussed. Finally the equations are generalized for higher order systems. They are exact for regular solutions, but may be used in a semiempirical mode for non-regular solutions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In terabit-density magnetic recording, several bits of data can be replaced by the values of their neighbors in the storage medium. As a result, errors in the medium are dependent on each other and also on the data written. We consider a simple 1-D combinatorial model of this medium. In our model, we assume a setting where binary data is sequentially written on the medium and a bit can erroneously change to the immediately preceding value. We derive several properties of codes that correct this type of errors, focusing on bounds on their cardinality. We also define a probabilistic finite-state channel model of the storage medium, and derive lower and upper estimates of its capacity. A lower bound is derived by evaluating the symmetric capacity of the channel, i.e., the maximum transmission rate under the assumption of the uniform input distribution of the channel. An upper bound is found by showing that the original channel is a stochastic degradation of another, related channel model whose capacity we can compute explicitly.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently in, a framework was given to construct low ML decoding complexity Space-Time Block Codes (STBCs) via codes over the finite field F4. In this paper, we construct new full-diversity STBCs with cubic shaping property and low ML decoding complexity via codes over F4 for number of transmit antennas N = 2m, m >; 1, and rates R >; 1 complex symbols per channel use. The new codes have the least ML decoding complexity among all known codes for a large set of (N, R) pairs. The new full-rate codes of this paper (R = N) are not only information-lossless and fully diverse but also have the least known ML decoding complexity in the literature. For N ≥ 4, the new full-rate codes are the first instances of full-diversity, information-lossless STBCs with low ML decoding complexity. We also give a sufficient condition for STBCs obtainable from codes over F4 to have cubic shaping property, and a sufficient condition for any design to give rise to a full-diversity STBC when the symbols are encoded using rotated square QAM constellations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a construction of constant weight codes based on the prime ideals of a Noetherian commutative ring. The coding scheme is based on the uniqueness of the primary decomposition of ideals in Noetherian rings. The source alphabet consists of a set of radical ideals constructed from a chosen subset of the prime spectrum of the ring. The distance function between two radical ideals is taken to be the Hamming metric based on the symmetric distance between sets. As an application we construct codes for random networks employing SAF routing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The diversity order and coding gain are crucial for the performance of a multiple antenna communication system. It is known that space-time trellis codes (STTC) can be used to achieve these objectives. In particular, we can use STTCs to obtain large coding gains. Many attempts have been made to construct STTCs which achieve full-diversity and good coding gains, though a general method of construction does not exist. Delay diversity code (rate-1) is known to achieve full-diversity, for any number of transmit antennas and any signal set, but does not give a good coding gain. A product distance code based delay diversity scheme (Tarokh, V. et al., IEEE Trans. Inform. Theory, vol.44, p.744-65, 1998) enables one to improve the coding gain and construct STTCs for any given number of states using coding in conjunction with delay diversity; it was stated as an open problem. We achieve such a construction. We assume a shift register based model to construct an STTC for any state complexity. We derive a sufficient condition for this STTC to achieve full-diversity, based on the delay diversity scheme. This condition provides a framework to do coding in conjunction with delay diversity for any signal constellation. Using this condition, we provide a formal rate-1 STTC construction scheme for PSK signal sets, for any number of transmit antennas and any given number of states, which achieves full-diversity and gives a good coding gain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we explore the use of LDPC codes for nonuniform sources under distributed source coding paradigm. Our analysis reveals that several capacity approaching LDPC codes indeed do approach the Slepian-Wolf bound for nonuniform sources as well. The Monte Carlo simulation results show that highly biased sources can be compressed to 0.049 bits/sample away from Slepian-Wolf bound for moderate block lengths.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we give a new framework for constructing low ML decoding complexity space-time block codes (STBCs) using codes over the Klein group K. Almost all known low ML decoding complexity STBCs can be obtained via this approach. New full- diversity STBCs with low ML decoding complexity and cubic shaping property are constructed, via codes over K, for number of transmit antennas N = 2(m), m >= 1, and rates R > 1 complex symbols per channel use. When R = N, the new STBCs are information- lossless as well. The new class of STBCs have the least knownML decoding complexity among all the codes available in the literature for a large set of (N, R) pairs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A generalized enthalpy update scheme is presented for evaluating solid and liquid fractions during the solidification of binary alloys, taking solid movement into consideration. A fixed-grid, enthalpy-based method is developed such that the scheme accounts for equilibrium as well as for nonequilibrium solidification phenomena, along with solid phase movement. The effect of solid movement on the solidification interface shape and macrosegregation is highlighted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a cooperative relay-assisted communication system that uses rateless codes, packets get transmitted from a source to a destination at a rate that depends on instantaneous channel states of the wireless links between nodes. When multiple relays are present, the relay with the highest channel gain to the source is the first to successfully decode a packet from the source and forward it to the destination. Thus, the unique properties of rateless codes ensure that both rate adaptation and relay selection occur without the transmitting source or relays acquiring instantaneous channel knowledge. In this paper, we show that in such cooperative systems, buffering packets at relays significantly increases throughput. We develop a novel analysis of these systems that combines the communication-theoretic aspects of cooperation over fading channels with the queuing-theoretic aspects associated with buffering. Closed-form expressions are derived for the throughput and end-to-end delay for the general case in which the channels between various nodes are not statistically identical. Corresponding results are also derived for benchmark systems that either do not exploit spatial diversity or do not buffer packets. Altogether, our results show that buffering - a capability that will be commonly available in practical deployments of relays - amplifies the benefits of cooperation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Regenerating codes are a class of recently developed codes for distributed storage that, like Reed-Solomon codes, permit data recovery from any subset of k nodes within the n-node network. However, regenerating codes possess in addition, the ability to repair a failed node by connecting to an arbitrary subset of d nodes. It has been shown that for the case of functional repair, there is a tradeoff between the amount of data stored per node and the bandwidth required to repair a failed node. A special case of functional repair is exact repair where the replacement node is required to store data identical to that in the failed node. Exact repair is of interest as it greatly simplifies system implementation. The first result of this paper is an explicit, exact-repair code for the point on the storage-bandwidth tradeoff corresponding to the minimum possible repair bandwidth, for the case when d = n-1. This code has a particularly simple graphical description, and most interestingly has the ability to carry out exact repair without any need to perform arithmetic operations. We term this ability of the code to perform repair through mere transfer of data as repair by transfer. The second result of this paper shows that the interior points on the storage-bandwidth tradeoff cannot be achieved under exact repair, thus pointing to the existence of a separate tradeoff under exact repair. Specifically, we identify a set of scenarios which we term as ``helper node pooling,'' and show that it is the necessity to satisfy such scenarios that overconstrains the system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Regenerating codes are a class of recently developed codes for distributed storage that, like Reed-Solomon codes, permit data recovery from any arbitrary of nodes. However regenerating codes possess in addition, the ability to repair a failed node by connecting to any arbitrary nodes and downloading an amount of data that is typically far less than the size of the data file. This amount of download is termed the repair bandwidth. Minimum storage regenerating (MSR) codes are a subclass of regenerating codes that require the least amount of network storage; every such code is a maximum distance separable (MDS) code. Further, when a replacement node stores data identical to that in the failed node, the repair is termed as exact. The four principal results of the paper are (a) the explicit construction of a class of MDS codes for d = n - 1 >= 2k - 1 termed the MISER code, that achieves the cut-set bound on the repair bandwidth for the exact repair of systematic nodes, (b) proof of the necessity of interference alignment in exact-repair MSR codes, (c) a proof showing the impossibility of constructing linear, exact-repair MSR codes for d < 2k - 3 in the absence of symbol extension, and (d) the construction, also explicit, of high-rate MSR codes for d = k+1. Interference alignment (IA) is a theme that runs throughout the paper: the MISER code is built on the principles of IA and IA is also a crucial component to the nonexistence proof for d < 2k - 3. To the best of our knowledge, the constructions presented in this paper are the first explicit constructions of regenerating codes that achieve the cut-set bound.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The constraint complexity of a graphical realization of a linear code is the maximum dimension of the local constraint codes in the realization. The treewidth of a linear code is the least constraint complexity of any of its cycle-free graphical realizations. This notion provides a useful parameterization of the maximum-likelihood decoding complexity for linear codes. In this paper, we show the surprising fact that for maximum distance separable codes and Reed-Muller codes, treewidth equals trelliswidth, which, for a code, is defined to be the least constraint complexity (or branch complexity) of any of its trellis realizations. From this, we obtain exact expressions for the treewidth of these codes, which constitute the only known explicit expressions for the treewidth of algebraic codes.