980 resultados para Beckman Coulter Laser diffraction particle size analyzer LS 230
Resumo:
Among the Solar System’s bodies, Moon, Mercury and Mars are at present, or have been in the recent years, object of space missions aimed, among other topics, also at improving our knowledge about surface composition. Between the techniques to detect planet’s mineralogical composition, both from remote and close range platforms, visible and near-infrared reflectance (VNIR) spectroscopy is a powerful tool, because crystal field absorption bands are related to particular transitional metals in well-defined crystal structures, e.g., Fe2+ in M1 and M2 sites of olivine or pyroxene (Burns, 1993). Thanks to the improvements in the spectrometers onboard the recent missions, a more detailed interpretation of the planetary surfaces can now be delineated. However, quantitative interpretation of planetary surface mineralogy could not always be a simple task. In fact, several factors such as the mineral chemistry, the presence of different minerals that absorb in a narrow spectral range, the regolith with a variable particle size range, the space weathering, the atmosphere composition etc., act in unpredictable ways on the reflectance spectra on a planetary surface (Serventi et al., 2014). One method for the interpretation of reflectance spectra of unknown materials involves the study of a number of spectra acquired in the laboratory under different conditions, such as different mineral abundances or different particle sizes, in order to derive empirical trends. This is the methodology that has been followed in this PhD thesis: the single factors previously listed have been analyzed, creating, in the laboratory, a set of terrestrial analogues with well-defined composition and size. The aim of this work is to provide new tools and criteria to improve the knowledge of the composition of planetary surfaces. In particular, mixtures composed with different content and chemistry of plagioclase and mafic minerals have been spectroscopically analyzed at different particle sizes and with different mineral relative percentages. The reflectance spectra of each mixture have been analyzed both qualitatively (using the software ORIGIN®) and quantitatively applying the Modified Gaussian Model (MGM, Sunshine et al., 1990) algorithm. In particular, the spectral parameter variations of each absorption band have been evaluated versus the volumetric FeO% content in the PL phase and versus the PL modal abundance. This delineated calibration curves of composition vs. spectral parameters and allow implementation of spectral libraries. Furthermore, the trends derived from terrestrial analogues here analyzed and from analogues in the literature have been applied for the interpretation of hyperspectral images of both plagioclase-rich (Moon) and plagioclase-poor (Mars) bodies.
Resumo:
The Stӧber process is commonly used for synthesising spherical silica particles. This article reports the first comprehensive study of how the process variables can be used to obtain monodispersed particles of specific size. The modal particle size could be selected within in the range 20 – 500 nm. There is great therapeutic potential for bioactive glass nanoparticles, as they can be internalised within cells and perform sustained delivery of active ions. Biodegradable bioactive glass nanoparticles are also used in nanocomposites. Modification of the Stӧber process so that the particles can contain cations such as calcium, while maintaining monodispersity, is desirable. Here, while calcium incorporation is achieved, with a homogenous distribution, careful characterisation shows that much of the calcium is not incorporated. A maximum of 10 mol% CaO can be achieved and previous reports are likely to have overestimated the amount of calcium incorporated.
A CFD approach on the effect of particle size on char entrainment in bubbling fluidised bed reactors
Resumo:
The fluid – particle interaction inside a 41.7 mg s-1 fluidised bed reactor is modelled. Three char particles of sizes 500 µm, 250 µm, and 100 µm are injected into the fluidised bed and the momentum transport from the fluidising gas and fluidised sand is modelled. Due to the fluidising conditions and reactor design the char particles will either be entrained from the reactor or remain inside the bubbling bed. The particle size is the factor that differentiates the particle motion inside the reactor and their efficient entrainment out of it. A 3-Dimensional simulation has been performed with a completele revised momentum transport model for bubble three-phase flow according to the literature as an extension to the commercial finite volume code FLUENT 6.2.
Resumo:
The fluid–particle interaction and the impact of different heat transfer conditions on pyrolysis of biomass inside a 150 g/h fluidised bed reactor are modelled. Two different size biomass particles (350 µm and 550 µm in diameter) are injected into the fluidised bed. The different biomass particle sizes result in different heat transfer conditions. This is due to the fact that the 350 µm diameter particle is smaller than the sand particles of the reactor (440 µm), while the 550 µm one is larger. The bed-to-particle heat transfer for both cases is calculated according to the literature. Conductive heat transfer is assumed for the larger biomass particle (550 µm) inside the bed, while biomass–sand contacts for the smaller biomass particle (350 µm) were considered unimportant. The Eulerian approach is used to model the bubbling behaviour of the sand, which is treated as a continuum. Biomass reaction kinetics is modelled according to the literature using a two-stage, semi-global model which takes into account secondary reactions. The particle motion inside the reactor is computed using drag laws, dependent on the local volume fraction of each phase. FLUENT 6.2 has been used as the modelling framework of the simulations with the whole pyrolysis model incorporated in the form of User Defined Function (UDF).
Resumo:
The Chinese Loess Plateau red clay sequences display a continuous alternation of sedimentary cycles that represent recurrent climatic fluctuations from 2.58 Ma to the Miocene. Deciphering such a record can provide us with vital information on global and Asian climatic variations. Lack of fossils and failure of absolute dating methods made magnetostratigraphy a leading method to build age models for the red clay sequences. Here we test the magnetostratigraphic age model against cyclostratigraphy. For this purpose we investigate the climate cyclicity recorded in magnetic susceptibility and sedimentary grain size in a red clay section previously dated 11Myr old with magnetostratigraphy alone. Magnetostratigraphy dating based on only visual correlation could potentially lead to erroneous age model. In this study the correlation is executed through the iteration procedure until it is supported by cyclostratigraphy; i.e., Milankovitch cycles are resolved in the best possible manner. Our new age model provides an age of 5.2Ma for the Shilou profile. Based on the new age model, wavelet analysis reveals the well-preserved 400 kyr and possible 100 kyr eccentricity cycles on the eastern Chinese Loess Plateau. Further, paleomonsoon evolution during 2.58-5.2Ma is reconstructed and divided into three intervals (2.58-3.6Ma, 3.6-4.5Ma, and 4.5-5.2Ma). The upper part, the youngest stage, is characterized by a relatively intensified summer monsoon, the middle stage reflects an intensification of the winter monsoon and aridification in Asia, and the earliest stage indicates that summer and winter monsoon cycles may have rapidly altered. The use of cyclostratigraphy along withmagnetostratigraphy gives us an effectivemethod of dating red clay sequences, and our results imply that many presently published age models for the red clay deposits should be perhaps re-evaluated.
Resumo:
The objective of this work was to use the high-pressure homogenizer (HPH) to prepare stable oil/water nanoemulsions presenting narrow particle size distribution. The dispersions were prepared using nonionic surfactants based on ethoxylated ether. The size and distribution of the droplets formed, along with their stability, were determined in a Zetasizer Nano ZS particle size analyzer. The stability and the droplet size distribution in these systems do not present the significant differences with the increase of the processing pressure in the HPH). The processing time can promote the biggest dispersion in the size of particles, thus reducing its stability.
Resumo:
Zirconia was prepared by a precipitation method and calcined at 723 K, 1023 K, and 1253 K in order to obtain monoclinic zirconia. The prepared zirconia was characterized by XRD, SEM, EDX, surface area and pore size analyzer, and particle size analyzer. Monoclinic ZrO2 as a catalyst was used for the gas-phase oxidation of isopropanol to acetone in a Pyrex-glass-flow-type reactor with a temperature range of 443 K - 473 K. It was found that monoclinic ZrO2 shows remarkable catalytic activity (68%) and selectivity (100%) for the oxidation of isopropanol to acetone. This kinetic study reveals that the oxidation of isopropanol to acetone follows the L-H mechanism.
Resumo:
MELO, Dulce Maria de Araújo et al. Evaluation of the Zinox and Zeolite materials as adsorbents to remove H2S from natural gas. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, Estados Unidos, v. 272, p. 32-36, 2006.
Resumo:
Given the environmental concern over global warming that occurs mainly by emission of CO2 from the combustion of petroleum, coal and natural gas research focused on alternative and clean energy generation has been intensified. Among these, the highlight the solid oxide fuel cell intermediate temperature (IT-SOFC). For application as electrolyte of the devices doped based CeO2 with rare earth ions (TR+ 3) have been quite promising because they have good ionic conductivity and operate at relatively low temperatures (500-800 ° C). In this work, studied the Ce1-xEuxO2-δ (x = 0,1, 0,2 and 0,3), solid solutions synthesized by the polymeric precursor method to be used as solid electrolyte. It was also studied the processing steps of these powders (milling, compaction and two step sintering) in order to obtain dense sintered pellets with reduced grain size and homogeneous microstructure. For this, the powders were characterized by thermal analysis, X-ray diffraction, particle size distribution and scanning electrons microscopy, since the sintered samples were characterized by dilatometry, scanning electrons microscopy, density and grain size measurements. By x-ray diffraction, it was verified the formation of the solid solution for all compositions. Crystallites in the nanometric scale were found for both sintering routes but the two step sintering presented significant reduction in the average grain size
Resumo:
Companies involved in kaolin mining and treatment represent an important area of industrial development in Brazil, significantly contribution to the worldwide production of such mineral. As a result, large volumes of kaolin residue are constantly generated and abandoned in the environment, negatively contributing to its preservation. In this scenario, the objective of the present study was to characterize the residue generated from kaolin mining as well as to assess its potential use as raw material for the production of ceramic tiles. Ceramic mixtures were prepared from raw materials characterized by X-ray fluorescence, X-ray diffraction, particle size analysis and thermal analysis. Three compositions were prepared using kaolin residue contents of 10%, 20% and 30%. Samples were uniaxially pressed, fired at 1200ºC and characterized aiming at establishing their mineralogical composition, water absorption, apparent porosity, specific mass, linear retraction and modulus of rupture. The results showed that the residue basically consisted of kaolinite and successfully replaced raw kaolin in the preparation of ceramic title formulations without significantly affecting the properties of the fired material