973 resultados para Bascom family (Thomas Bascom, d. 1682)
Resumo:
This study is concerned with the durability of cement stabilised minestone (CSM). Minestone is dominated by the clay-bearing mudrocks and shales of the Coal Measures. Consequently, engineering problems are often encountered due to the likelihood of these rocks undergoing volume change and degradation when exposed to fluctuations in moisture content. In addition, iron sulphides (chiefly pyrite) are frequently present in minestone as diagenetic minerals which on excavation have the potential to oxidise forming sulphate minerals. The oxidation of sulphides may in itself contribute to volume increase in pyritic rocks and sulphate minerals may combine with the products of cement hydration to produce further expansion. The physical and chemical properties of a wide range of minestones are determined and attempts are made to correlate these with the engineering performance of cement stabilised specimens subjected to short-term immersion in water. Criteria, based on these raw material indices are proposed with a view to eliminating minestones which are unsuitable. A long-term durability study is also described. In this, the geochemical stability of pyrite in CSM was examined together with the role played by the sulphur bearing mineralogy in determining the engineering performance of CSM's exposed to conditions of increased moisture availability. The nature of a number of disrupted CSM pavements which have been examined are also discussed.
Resumo:
Anchorage dependent cell culture is a useful model for investigating the interface that becomes established when a synthetic polymer is placed in contact with a biological system. The primary aim of this interdisciplinary study was to systematically investigate a number of properties that were already considered to have an influence on cell behaviour and thereby establish the extent of their importance. It is envisaged that investigations such as these will not only further the understanding of the mechanisms that affect cell adhesion but may ultimately lead to the development of improved biomaterials. In this study, surface analysis of materials was carried out in parallel with culture studies using fibroblast cells. Polarity, in it's ability to undergo hydrogen bonding (eg with water and proteins), had an important affect on cell behaviour, although structural arrangement and crystallinity were not found to exert any marked influence. In addition, the extent of oxidation that had occurred during the process of manufacture of substrates was also important. The treatment of polystyrene with a selected series of acids and gas plasmas confirmed the importance of polarity, structural groups and surface charge and it was shown that this polymer was not unique among `hydrophobic' materials in it's inability to support cell adhesion. The individual water structuring groups within hydrogel polymers were also observed to have controlling effects on cell behaviour. An overall view of the biological response to both hydrogel and non-hydrogel materials highlighted the importance of surface oxidation, polarity, water structuring groups and surface charge. Initial steps were also taken to analyse foetal calf serum, which is widely used to supplement cell culture media. Using an array of analytical techniques, further experiments were carried out to observe any possible differences in the amounts of lipids and calcium that become deposited to tissue culture and bacteriological grade plastic under cell culture conditions.
Resumo:
Biological soil crusts (BSCs) are formed by aggregates of soil particles and communities of microbial organisms and are common in all drylands. The role of BSCs on infiltration remains uncertain due to the lack of data on their role in affecting soil physical properties such as porosity and structure. Quantitative assessment of these properties is primarily hindered by the fragile nature of the crusts. Here we show how the use of a combination of non-destructive imaging X-ray microtomography (XMT) and Lattice Boltzmann method (LBM) enables quantification of key soil physical parameters and the modeling of water flow through BSCs samples from Kalahari Sands, Botswana. We quantify porosity and flow changes as a result of mechanical disturbance of such a fragile cyanobacteria-dominated crust. Results show significant variations in porosity between different types of crusts and how they affect the flow and that disturbance of a cyanobacteria-dominated crust results in the breakdown of larger pore spaces and reduces flow rates through the surface layer. We conclude that the XMT–LBM approach is well suited for study of fragile surface crust samples where physical and hydraulic properties cannot be easily quantified using conventional methods.
Resumo:
Commencement address by Professor Thomas Breslin at Florida International University dissects in a few words both the promise of a public university system and the threats to that system embedded in racial and class privilege.
Resumo:
Acknowledgments The authors thank Prof. Stanley Szefler for his comments on the paper and Lisa Law for help with editing
Resumo:
Marketing and policy researchers seeking to increase the societal impact of their scholarship should engage directly with relevant stakeholders. For maximum societal effect, this engagement needs to occur both within the research process and throughout the complex process of knowledge transfer. A relational engagement approach to research impact is proposed as complementary and building upon traditional approaches. Traditional approaches to impact employ bibliometric measures and focus on the creation and use of journal articles by scholarly audiences, an important but incomplete part of the academic process. The authors suggest expanding the strategies and measures of impact to include process assessments for specific stakeholders across the entire course of impact: from the creation, awareness, and use of knowledge to societal impact. This relational engagement approach involves the co-creation of research with audiences beyond academia. The authors hope to begin a dialogue on the strategies researchers can make to increase the potential societal benefits of their research.