988 resultados para Barium orthosilicate
Resumo:
Single-phase Ba(Cd1/3Ta2/3)O-3 powder was produced using conventional solid state reaction methods. Ba(Cd1/3Ta2/3)O-3 ceramics with 2 wt % ZnO as sintering additive sintered at 1550 degreesC exhibited a dielectric constant of similar to32 and loss tangent of 5x10(-5) at 2 GHz. X-ray diffraction and thermogravimetric measurements were used to characterize the structural and thermodynamic properties of the material. Ab initio electronic structure calculations were used to give insight into the unusual properties of Ba(Cd1/3Ta2/3)O-3, as well as a similar and more widely used material Ba(Zn1/3Ta2/3)O-3. While both compounds have a hexagonal Bravais lattice, the P321 space group of Ba(Cd1/3Ta2/3)O-3 is reduced from P (3) under bar m1 of Ba(Zn1/3Ta2/3)O-3 as a result of a distortion of oxygen away from the symmetric position between the Ta and Cd ions. Both of the compounds have a conduction band minimum and valence band maximum composed of mostly weakly itinerant Ta 5d and Zn 3d/Cd 4d levels, respectively. The covalent nature of the directional d-electron bonding in these high-Z oxides plays an important role in producing a more rigid lattice with higher melting points and enhanced phonon energies, and is suggested to play an important role in producing materials with a high dielectric constant and low microwave loss. (C) 2005 American Institute of Physics.
Resumo:
The structures of multilayer Langmuir-Blodgett films of barium arachidate before and after heat treatment have been investigated using both atomic force microscopy (AFM) and grazing incidence synchrotron X-ray diffraction (GIXD). AFM gave information on surface morphology at molecular resolution while GIXD provided quantitative details of the lattice structures of the films with their crystal symmetries and lattice constants. As-prepared films contained three coexisting structures: two triclinic structures with the molecularchains tilted by about 20degrees from the film normal and with 3 x 1 or 2 x 2 super-lattice features arising from height modulation of the molecules in the films; a rectangular structure with molecules perpendicular to the film surface. Of these, the 3 x 1 structure is dominant with a loose correlation between the bilayers. In the film plane both superstructures are commensurate with the local structures, having different oblique symmetries. The lattice constants for the 3 x 1 structure are a(s) = 3a = 13.86 Angstrom, b(s) = b = 4.31 Angstrom and gamma(s) = gamma = 82.7degrees; for the 2 x 2 structure a(s) = 2a = 16.54 Angstrom, b(s) = 2b = 9.67 Angstrom, gamma(s) = gamma = 88degrees. For the rectangular structure the lattice constants are a = 7.39 Angstrom, b = 4.96 Angstrom and gamma = 90degrees. After annealing, the 2 x 2 and rectangular structures were not observed, while the 3 x 1 structure had developed over the entire film. For the annealed films the correlation length in the film plane is about twice that in the unheated films, and in the out-of-plane direction covers two bilayers. The above lattice parameters, determined by GIXD, differed significantly from the values obtained by AFM, due possibly to distortion of the films by the scanning action of the AFM tip. (C) 2004 Published by Elsevier B.V.
Resumo:
The design and construction of a sputtering system for the deposition of barium titanate thin films is described. The growth and structure of barium titanate films deposited on a variety of substrates including amorphous carbon fi1ms, potassium bromide single crystals, and polycrystalline gold films has been studied. Films deposited on all substrates at room temperature were amorphous. Polycrystalline titanate films were formed on polycrystalline and amorphous substrates at temperatures above 450°C while films with a pronounced texture could be expitaxially deposited on single crystal potassium bromide above a temperature of only 200°C. Results of dielectric measurements made on the films are reported. Amorphous films were highly insulating (resistivities ~1014 ohm.cm with dielectric constants of between 10 and 20.
Resumo:
This work revealed that the solid solution compounds of Sr 2-xBaxNb2O7 are promising lead-free materials for high-temperature piezoelectric sensor application. These compounds were confirmed as ferroelectric materials with high Curie points (> 900°C) by their piezoelectric activity after poling, ferroelectric domain switching in their P-E hysteresis loops and thermal depoling behavior. The effect of Ba substitution on the structure and properties of Sr 2-xBaxNb2O7 (x < 1.0) was investigated. The solid solution limit of Sr2-xBaxNb 2O7 was determined by XRD as x < 0.6. The a-, b-, c- axes, and cell volume increase with Ba addition. The textured ceramics of Sr2-xBaxNb2O7 were prepared for the first time. The highest d33 was measured as 3.6 ± 0.1 pC/N for Sr1.8Ba0.2Nb2O7. © 2012 The American Ceramic Society.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
Grain size effects on the physical properties of polycrystalline ferroelectrics have been extensively studied for decades; however there are still major controversies regarding the dependence of the piezoelectric and ferroelectric properties on the grain size. Dense BaTiO3 ceramics with different grain sizes were fabricated by either conventional sintering or spark plasma sintering using micro- and nano-sized powders. The results show that the grain size effect on the dielectric permittivity is nearly independent of the sintering method and starting powder used. A peak in the permittivity is observed in all the ceramics with a grain size near 1μm and can be attributed to a maximum domain wall density and mobility. The piezoelectric coefficient d33 and remnant polarization Pr show diverse grain size effects depending on the particle size of the starting powder and sintering temperature. This suggests that besides domain wall density, other factors such as back fields and point defects, which influence the domain wall mobility, could be responsible for the different grain size dependence observed in the dielectric and piezoelectric/ferroelectric properties. In cases where point defects are not the dominant contributor, the piezoelectric constant d33 and the remnant polarization Pr increase with increasing grain size.
Resumo:
Low temperature sintering has become a very important research area in ceramics processing and sintering as a promising process to obtain grain size below 100nm. For electronic ceramics, low temperature sintering is particularly difficult, because not only the required microstructure but also the desired electronic properties should be obtained. In this dissertation, the effect of liquid sintering aids and particle size (micrometer and nanometer) on sintering temperature and Positive Temperature Coefficient Resistivity (PTCR) property are investigated for Ba1-xSrxTiO3 (BST) doped with 0.2-0.3mol% Sb3+ (x = 0.1, 0.2, 0.3, 0.4 and 0.5). Different sintering aids with low melting point are used as sintering aids to decrease the sintering temperature for micrometer size BST particles. Micrometer size and nanometer size Ba1-xSrxTiO 3 (BST) particles are used to demonstrate the particle size effect on the sintering temperature for semiconducting BST. To reduce the sintering temperature, three processes are developed, i.e. 1 using sol-gel nanometer size Sb3+ doped powders with a sintering aid; 2 using micrometer size powders plus a sintering aid; and 3 using nanometer size Sb3+ doped powders with sintering aids. Grain size effect on PTCR characteristics is investigated through comparison between micrometer size powder sintered pellets and nanometer size powder sintered pellets. The former has lower resistivity at temperatures below the Curie temperature (Tc) and high resistivity at temperatures above the Curie temperature (Tc) along with higher ρ max/ρmin ratio (ρmax is the highest resistivity at temperatures above Tc, ρmin is the lowest resistivity at temperatures below Tc), whereas the latter has both higher ρ max and ρmin. Also, ρmax/ρmin is smaller than that of pellets with larger grain size. The reason is that the solid with small grain size has more grain boundaries than the solid with large grain size. The contribution z at room temperature and high temperature and a lower ρmax/ρmin ratio value.
Resumo:
Low temperature sintering has become a very important research area in ceramics processing and sintering as a promising process to obtain grain size below 100nm. For electronic ceramics, low temperature sintering is particularly difficult, because not only the required microstructure but also the desired electronic properties should be obtained. In this dissertation, the effect of liquid sintering aids and particle size (micrometer and nanometer) on sintering temperature and Positive Temperature Coefficient Resistivity (PTCR) property are investigated for Ba1-xSrxTiO3 (BST) doped with 0.2-0.3mol% Sb3+ (x = 0.1,0.2,0.3,0.4 and 0.5). Different sintering aids with low melting point are used as sintering aids to decrease the sintering temperature for micrometer size BST particles. Micrometer size and nanometer size Ba1-xSrxTiO3 (BST) particles are used to demonstrate the particle size effect on the sintering temperature for semiconducting BST. To reduce the sintering temperature, three processes are developed, i.e. 1 using sol-gel nanometer size Sb3+ doped powders with a sintering aid; 2 using micrometer size powders plus a sintering aid; and 3 using nanometer size Sb3+ doped powders with sintering aids. Grain size effect on PTCR characteristics is investigated through comparison between micrometer size powder sintered pellets and nanometer size powder sintered pellets. The former has lower resistivity at temperatures below the Curie temperature (Tc) and high resistivity at temperatures above the Curie temperature (Tc) along with higher ñmax/ñmin ratio (ñmax is the highest resistivity at temperatures above Tc, ñmin is the lowest resistivity at temperatures below Tc), whereas the latter has both higher ñmax and ñmin. Also, ñmax/ñmin is smaller than that of pellets with larger grain size. The reason is that the solid with small grain size has more grain boundaries than the solid with large grain size. The contribution z at room temperature and high temperature and a lower ñmax/ñmin ratio value.
Resumo:
Since Dymond et al. (1992, doi:10.1029/92PA00181) proposed the paleoproductivity algorithm based on "Bio-Ba", which relies on a strong correlation between Ba and organic carbon fluxes in sediment traps, this proxy has been applied in many paleoproductivity studies. Barite, the main carrier of particulate barium in the water column and the phase associated with carbon export, has also been suggested as a reliable paleoproductivity proxy in some locations. We demonstrate that Ba(excess) (total barium minus the fraction associated with terrigenous material) frequently overestimates Ba(barite) (barium associated with the mineral barite), most likely due to the inclusion of barium from phases other than barite and terrigenous silicates (e.g., carbonate, organic matter, opal, Fe-Mn oxides, and hydroxides). A comparison between overlying oceanic carbon export and carbon export derived from Ba(excess) shows that the Dymond et al. (1992) algorithm frequently underestimates carbon export but is still a useful carbon export indicator if all caveats are considered before the algorithm is applied. Ba(barite) accumulation rates from a wide range of core top sediments from different oceanic settings are highly correlated to surface ocean 14C and Chlorophyll a measurements of primary production. This relationship varies by ocean basin, but with the application of the appropriate f ratio to 14C and Chlorophyll a primary production estimates, the plot of Ba(barite) accumulation and carbon export for the equatorial Pacific, Atlantic, and Southern Ocean converges to a global relationship that can be used to reconstruct paleo carbon export.
Resumo:
Introduction. Esophageal intramural pseudodiverticulosis is a rare condition characterized by the dilatation of the submucosal glands. Case presentation. We present a case of esophageal intramural pseudodiverticulosis in a 72-year-old Caucasian man who presented with dysphagia and with a background history of alcohol abuse. An upper gastrointestinal endoscopy of our patient showed an esophageal stricture with abnormal mucosal appearances, but no malignant cells were seen at biopsy. Appearances on a barium esophagram were pathognomonic for esophageal intramural pseudodiverticulosis. Conclusion. We demonstrate the enduring usefulness of barium esophagography in the characterization of abnormal mucosal appearances at endoscopy.
Resumo:
Particle reactive elements are scavenged to a higher degree at ocean margins than in the open ocean due to higher fluxes of biogenic and terrigenous particles. In order to determine the influence of these processes on the depositional fluxes of 10Be and barium we have performed high-resolution measurements on sediment core GeoB1008-3 from the Congo Fan. Because the core is dominated by terrigenous matter supplied by the Congo River, it has a high average mass accumulation rate of 6.5 cm/kyr. Biogenic 10Be and Ba concentrations were calculated from total concentrations by subtracting the terrigenous components of10Be and Ba, which are assumed to be proportional to the flux of Al2O3. The mean Ba/Al weight ratio of the terrigenous component was determined to be 0.0045. The unusualy high terrigenous 10Be concentrations of 9.1 * 10**9 atoms/g Al2O3 are either due to input of particles with high10Be content by the Congo River or due to scavenging of oceanic 10Be by riverine particles. The maxima of biogenic 10Be and Ba concentrations coincide with maxima of the paleoproductivity rates. Time series analysis of the 10Be and of Ba concentration profiles reveals a strong dominance of the precessional period of 24 kyr, which also controls the rates of paleoproductivity in this core. During the maxima of productivity the flux of biogenic Ba is enhanced to a larger extent than that of biogenic 10Be. Applying a model for coastal scavenging, we ascribe the observed higher sensitivity of Ba to biogenic particle fluxes to the fact that the ocean residence time of Ba is approximately 10 times longer than that of 10Be.