945 resultados para BASIN OF ATTRACTION
Resumo:
In weak argillaceous rocks the unweathered strength may be barely sufficient to meet civil engineering reguirements and any reductjon due to weathering will be critical. This study investigates the weathering of the Lower Lias clays with particular reference to their petrography and engineering properties. Investigations revealed the Midland Basin of deposition to contain reasonable thicknesses of clay, relatively uniform in nature with a well developed weathered zone, From the available exposures, the weathering zone of the Blockley Clay pit was selected and sampled for laboratory investigations of; Structure, Mineralogy and Chemistry and Engineering Properties. The nature and orientation of the fissures in the unweathered clay were analysed. A close relationship was found to exist between the major joint set and the ground surface, with stress release due to excavation being almost negligible. Thin sections of the clay, examined for structural data, suggested that there exist layers or areas that have been disturbed as a result of density differences. Shear planes were found in both the unweathered and weathered clay, in the latter case often associated with remoulding of the material. A direct measure of remoulding was obtained from the birefringence ratio. The fabric was examined in closer detail using the scanning electron microscope. Mineralogy, as revealed by X-ray and optical techniques indicated illite as the dominant clay mineral, with kaolinite subsidiary; quartz, calcite, pyrite, chlorite/vermiculite are present as accessory minerals. Weathering changes this relationship, calcite and pyrite being removed early in the process, with illite being degraded. The cementing action of calcite and iron oxides was investigated however, this was shown to be negligible. Quantitative measurements of both fixed (with minerals) and free (oxide coatings) iron were obtained by atomic absorption, with the Fe 3+/ Fe2+ ratio obtained by Mossbauer spectroscopy, Evidence indicates that free iron oxide coatings only become important as a result of weathering with the maximum concentration in the very highly weathered material. Engineering index properties and shear strength values were taken throughout the profile, Relationships between moisture content and strength, liquid limit and iron (Fe) were obtained and a correlation between the weathering zomes and the shear strength/depth curve has been established.
Resumo:
The range of existence and the properties of two essentially different chaotic attractors found in a model of nonlinear convection-driven dynamos in rotating spherical shells are investigated. A hysteretic transition between these attractors is established as a function of the rotation parameter t. The width of the basins of attraction is also estimated. © 2012 The Royal Swedish Academy of Sciences.
Resumo:
* Research supported by NATO GRANT CRG 900 798 and by Humboldt Award for U.S. Scientists.
Resumo:
2000 Mathematics Subject Classification: 60G70, 60F12, 60G10.
Resumo:
2000 Mathematics Subject Classification: Primary 60F17, 60G52, 60G70 secondary 60E07, 62E20.
Resumo:
We analyzed the dynamics of freshwater marsh vegetation of Taylor Slough in eastern Everglades National Park for the 1979 to 2003 period, focusing on cover of individual plant species and on cover and composition of marsh communities in areas potentially influenced by a canal pump station (‘‘S332’’) and its successor station (‘‘S332D’’). Vegetation change analysis incorporated the hydrologic record at these sites for three intervals: pre-S332 (1961–1980), S332 (1980–1999), post-S332 (1999–2002). During S332 and post-S332 intervals, water level in Taylor Slough was affected by operations of S332 and S332D. To relate vegetation change to plot-level hydrological conditions in Taylor Slough, we developed a weighted averaging regression and calibration model (WA) using data from the marl prairies of Everglades National Park and Big Cypress National Preserve. We examined vegetation pattern along five transects. Transects 1–3 were established in 1979 south of the water delivery structures, and were influenced by their operations. Transects 4 and 5 were established in 1997, the latter west of these structures and possibly under their influence. Transect 4 was established in the northern drainage basin of Taylor Slough, beyond the likely zones of influence of S332 and S332D. The composition of all three southern transects changed similarly after 1979. Where muhly grass (Muhlenbergia capillaris var. filipes) was once dominant, sawgrass (Cladium jamaicense), replaced it, while where sawgrass initially predominated, hydric species such as spikerush (Eleocharis cellulosa Torr.) overtook it. Most of the changes in species dominance in Transects 1–3 occurred after 1992, were mostly in place by 1995–1996, and continued through 1999, indicating how rapidly vegetation in seasonal Everglades marshes can respond to hydrological modifications. During the post-S332 period, these long-term trends began reversing. In the two northern transects, total cover and dominance of both muhly grass and sawgrass increased from 1997 to 2003. Thus, during the 1990’s, vegetation composition south of S332 became more like that of long hydroperiod marshes, but afterward it partially returned to its 1979 condition, i.e., a community characteristic of less prolonged flooding. In contrast, the vegetation change along the two northern transects since 1997 showed little relationship to hydrologic status.
Resumo:
Ecosystem management practices that modify the major drivers and stressors of an ecosystem often lead to changes in plant community composition. This paper examines how closely the trajectory of vegetation change in seasonally-flooded wetlands tracks management-induced alterations in hydrology and soil characteristics. We used trajectory analysis, a multivariate method designed to test hypotheses about rates and directions of community change, to examine vegetation shifts in response to changes in water management practices within the Taylor Slough basin of Everglades National Park. We summarized vegetation data by non-metric multidimensional scaling ordination, and examined the time trajectory of each site along environmental vectors representing hydrology and soil phosphorus gradients. In the Taylor Slough basin, vegetation change trajectories closely followed the hydrologic changes caused by the operation of water pumps and detention ponds adjacent to the canals. We also observed a shift in vegetation composition along a vector of increasing soil phosphorus, which suggests the need for implementing measures to avoid P-enrichment in southern Everglades marl prairies. This study indicates that shifts in vegetation composition in response to changes in hydrologic conditions and associated parameters may be detected through trajectory analysis, thereby providing feedback for adaptive management of wetland ecosystems.
Resumo:
Variations in Mg/Ca-based sea surface temperature and oxygen isotope ratio (d18O) of the surface water in the northern East China Sea (ECS) were reconstructed with high resolution during the last 18 kyr using planktic foraminifera. Millennial-scale variations between warmer, more saline surface water and cooler, less saline surface water were recognized during the early deglacial period and the Holocene, suggesting changes in the mixing ratio between the Kuroshio Water and the Changjiang Diluted Water. Stronger East Asian summer monsoon (EASM) precipitation events in south China are identified at 10.5, 8.8, 7.0, 5.3, 4.7, 2.9, 1.7, and 0.5 ka, based on sea surface salinity (SSS) records of the northern ECS. Weaker EASM precipitation events are also detected at 9.3, 8.3, 7.3, 6.0, 3.3, 2.3, 0.7, and 0.4 ka during the Holocene. These events agree with the maxima in d18O records of stalagmites from various parts of the Changjiang (Yangtze) River drainage. This agreement supports that our SSS record properly captures the millennial-scale dry (less EASM precipitation) events over the drainage basin of the Changjiang River during the Holocene. These dry events are also in good agreement with North Atlantic ice-rafted events, suggesting a teleconnection between North Atlantic climate and the EASM during the Holocene.
Resumo:
Palygorskite streak veinlets were studied in the lower part of a sediment core collected at Station VITYAZ4599 in the central (Mid-Indian) basin of the Indian Ocean. It is suggested that this palygorskite is of hydrothermal origin and was formed in pre-Pliocene time.
Resumo:
A study of distribution of live individuals of benthic foraminifera in sediments of the Sea of Okhotsk and of the Northwestern Basin of the Pacific Ocean shows that they can be present in sediments up to depth of 30 cm and probably can live there for long periods, sometimes forming high concentrations. Living individuals in the subsurface layer often account for more than 50% of total biomass, which varies from 1 to 21 g/m**2 in different morphological structures. The largest biomass values are attained in underwater rises embedded in relatively warm, oxygen-saturated Pacific waters. Minimum total biomass concentrations occur in deep-water depressions where stagnation phenomena are observed. Foraminifera biomass everywhere decreases gradually with increasing depth from the surface of sediments regardless of relief, depth, and nature of sediments.
Resumo:
Large euhedral crystals of calcium carbonate hexahydrate were recovered from a shelf basin of the Bransfield Strait, Antarctic Peninsula, at a water depth of 1950 meters and sub-zero bottom water temperatures. The chemistry, mineralogy, and stable isotope composition of this hydrated calcium carbonate phase, its environment of formation, and its mode of precipitation confirm the properties variously attributed to hypothetical precursors of the glendonites and thereby greatly expand their use in paleoceanographic interpretation.
Resumo:
Sediment descriptions and lithostratigraphy (chapter 6.4) NANSEN BASIN The upperrnost 20-50 cm of sedirnents in the Nansen Basin norrnally cornprise soft dark brown, brown-grayish and brown clay. Except for the toprnost clay, the four piston cores retrieved, contained quite different lithologies: a rnuddy diarnicton with outsized clasts (PS2157-6), sandy-silt beds alternating with clay beds (PS2159-6), and silty clay beds of brownish and grayish colours (PS2161-3). Core PS2208-3 was retrieved frorn a plateau on a searnount. The plateau was serni-encircled by hills. The upper 250 cm of this core cornprise brown and olive brown clays. Below these are several sandlayers and a 74 cm thick unit of a sandy mud with rnud-clasts up to 20 cm in diameter. GAKKEL RIDGE The uppermost 20-50 cm of sediments on the Gakkel Ridge comprise soft dark brown, brown, grayish brown clay. In most of the cores there are two horizons of brown clay separated by olive brown clay. The upper horizon is darker. The older stratigraphy is rather varied. Core PS2165-1 contains several thin gray sandlsilt layers, probably distal turbidites. The sarne is found in Core PS2167-1. This core also has a thick (approx. 2 rn) coarse grained turbidite containing large rnud clasts and basaltic rock fragrnents. The color of the turbiditic layers is dark gray. There are several horizons of hernipelagic sandylsilty clays with quite a variety in colours; black, gray, olive, brown, yellowish brown and reddish. The colour variation rnay be due to hydrotherrnal activity or provenance or a shift in redox potential. Cores PS2168-2 and PS2169-1 have typical sequences of very dark gray sandy mud with sharp lower boundaries grading upwards into olive brown clay. Below the lower boundary is often a thin (1-2 cm) gray clay layer. AMUNDSEN BASIN The giant box cores (GKG) provided in most cases excellently preserved sedirnent surfaces which consisted in the entire Amundsen Basin of dark brown to dark grayish brown silty clay with few dropstones and common calcareous microfossils (foraminifers and calcareous nannofossils). The brown and grayish brown color of the sediment surface is a result of the oxidizing conditions at the seafloor due to the rapid renewal of the bottom water rnasses. Planktic forarninifers and calcareous nannofossils are relatively frequent and well preserved despite the rernote location of the basin and its water depths of >4000 rn. Srnear slide descriptions have shown that the surface sedirnents consist dorninantly of clays to silty rnuds with clay rninerals and quartz as the rnost important constituents. The coarse fractions contained besides planktic and benthic forarninifers and coarse clastic rnaterials, rare bivalves, dropstones and mud clasts. The Station PS2190 at the North Pole is a particular good exarnple of the type of sedirnents deposited at the sea floor surface of the Arnundsen Basin, with hornogenous dark brown soft clay covering a sedirnent sequence of highly variable cornposition. Nurnerous giant box cores also provide insight into the detailed lithostratigraphy of the upperrnost sedirnent layers. Twelve box cores have been collected frorn the Arnundsen Basin. Below the youngest unit of 5-20 crn thick silty clays deposits of variable stratigraphies have been found, rnostly consisting of clays or silty clays. In a few instances turbidites have been observed. Benthic forarninifers have not been found in the surface sedirnents. Other fossils were extrernely rare. Bioturbation is weakly developed on all stations. Benthic anirnals seern to live only in and on the upperrnost 2 cm of the uppermost sediment layer. They cornprise amphipods (on all stations) and holothurians, bryozoans, polychaetes, and porifers at one station each. LOMONOSOV RIDGE Sediments from the Lomonosov Ridge show a variety of colors and textures. Following smear slide analyses they are composed mostly of clay minerals and quartz with mica and feldspars, especially in the siltier and sandier parts. Volcanic glass, microcrystalline carbonate, opaque minerals and green amphibole are occasional accessories. The sediments from the Lomonosov Ridge show a noticeable difference from sediments collected from the surrounding basins. Lomonosov Ridge sediments are richer in silt and sand than basin sediments. Occasional turbidites occur in ridge sediments but these must be of entirely local origin. The ridge sediments include frequent layers of "cottage cheese" texture made up of what appear to be small, angular mud clasts of a variety of colors.
Resumo:
The Precambrian basement beneath the Pechora Basin of northern Russia is known from deep (up to approx. 4.5 km) drill holes to be largely composed of Neoproterozoic successions, variously deformed and metamorphosed and intruded by magmatic suites of Vendian age. Presented here are new single- zircon, Pb-evaporation (Kober method) ages from eight intrusions across the Izhma, Pechora and Bolshezemel'skaya Zones, all from below the Lower Ordovician (locally Middle Cambrian) unconformity. The majority of the intrusions (six) yield remarkably similar ages of 550-560 Ma, apparently dating a widespread pulse of late- to post-tectonic magmatism. An early Vendian granite (618 Ma) has been identified in the northeasternmost region (Bolshezemel'skaya zone) and a Devonian granodiorite (380 Ma) in the Pechora Zone, where mid to late Palaeozoic magmatism has been previously reported. Evidence of inheritance in the zircon populations suggests the presence of Mesoproterozoic crust beneath the Neoproterozoic complexes.
Resumo:
It has been proposed that North Pacific sea surface temperature (SST) evolution was intimately linked to North Atlantic climate oscillations during the last glacial-interglacial transition. However, during the early deglaciation and the Last Glacial Maximum, the SST development in the subarctic northwest Pacific and the Bering Sea is poorly constrained as most existing deglacial SST records are based on alkenone paleothermometry, which is limited prior to 15 ka B.P. in the subarctic North Pacific realm. By applying the TEXL86 temperature proxy we obtain glacial-Holocene-SST records for the marginal northwest Pacific and the Western Bering Sea. Our TEXL86-based records and existing alkenone data suggest that during the past 15.5 ka, SSTs in the northwest Pacific and the Western Bering Sea closely followed millennial-scale climate fluctuations known from Greenland ice cores, indicating rapid atmospheric teleconnections with abrupt climate changes in the North Atlantic. Our SST reconstructions indicate that in the Western Bering Sea SSTs drop significantly during Heinrich Stadial 1 (HS1), similar to the known North Atlantic climate history. In contrast, progressively rising SST in the northwest Pacific is different to the North Atlantic climate development during HS1. Similarities between the northwest Pacific SST and climate records from the Gulf of Alaska point to a stronger influence of Alaskan Stream waters connecting the eastern and western basin of the North Pacific during this time. During the Holocene, dissimilar climate trends point to reduced influence of the Alaskan Stream in the northwest Pacific.
Resumo:
In this chapter, we will report on the amino acids in the total acid hydrolysate of eight sediment samples from Leg 68 Site 502. This site was located on a topographic high at a depth of 3051 meters in the Colombian Basin of the western Caribbean Sea. Four holes were cored at the site by means of the hydraulic piston corer to a maximum sediment depth of 218 meters. The composite section is a virtually continuous, undisturbed sediment record covering almost 8 million years from the Holocene to late Miocene. Age estimates for the section are based on excellent magnetostratigraphic and biostratigraphic records. Four lithostratigraphic units (A, B, C, and D) were recognized, based on differences in color and content of clay, ash, foraminifers, and siliceous microfossils (Prell, Gardner, et al., 1980): A, yellowish brown to light brownish gray foraminifer-bearing (> 10%) nannofossil marl; B, gray to olive gray foraminifer-bearing nannofossil marl with occasional ash beds; C, light gray to dark greenish gray calcareous clay and foraminifer-bearing (< 10%) nannofossil marl; D, pale green to grayish green calcareous, ash-bearing clay with siliceous microfossils. The calcium carbonate content of these sediments increases from about 27 to about 49% from late Miocene to middle Pliocene (about 3.6 Ma) and remains uniform at about 48 to 50% from that time throughout the Quaternary. The eight sediment samples for amino acid analyses came from the third (502B) and fourth (502C) holes at Site 502. Samples ranged in sub-bottom depth from 4.3 to 225 meters spanning time from 0.3 to 7.7 Ma.