834 resultados para Automotive supplies - Design - Simulation methods


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electricity distribution sector will face significant changes in the future. Increasing reliability demands will call for major network investments. At the same time, electricity end-use is undergoing profound changes. The changes include future energy technologies and other advances in the field. New technologies such as microgeneration and electric vehicles will have different kinds of impacts on electricity distribution network loads. In addition, smart metering provides more accurate electricity consumption data and opportunities to develop sophisticated load modelling and forecasting approaches. Thus, there are both demands and opportunities to develop a new type of long-term forecasting methodology for electricity distribution. The work concentrates on the technical and economic perspectives of electricity distribution. The doctoral dissertation proposes a methodology to forecast electricity consumption in the distribution networks. The forecasting process consists of a spatial analysis, clustering, end-use modelling, scenarios and simulation methods, and the load forecasts are based on the application of automatic meter reading (AMR) data. The developed long-term forecasting process produces power-based load forecasts. By applying these results, it is possible to forecast the impacts of changes on electrical energy in the network, and further, on the distribution system operator’s revenue. These results are applicable to distribution network and business planning. This doctoral dissertation includes a case study, which tests the forecasting process in practice. For the case study, the most prominent future energy technologies are chosen, and their impacts on the electrical energy and power on the network are analysed. The most relevant topics related to changes in the operating environment, namely energy efficiency, microgeneration, electric vehicles, energy storages and demand response, are discussed in more detail. The study shows that changes in electricity end-use may have radical impacts both on electrical energy and power in the distribution networks and on the distribution revenue. These changes will probably pose challenges for distribution system operators. The study suggests solutions for the distribution system operators on how they can prepare for the changing conditions. It is concluded that a new type of load forecasting methodology is needed, because the previous methods are no longer able to produce adequate forecasts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes finite-sample procedures for testing the SURE specification in multi-equation regression models, i.e. whether the disturbances in different equations are contemporaneously uncorrelated or not. We apply the technique of Monte Carlo (MC) tests [Dwass (1957), Barnard (1963)] to obtain exact tests based on standard LR and LM zero correlation tests. We also suggest a MC quasi-LR (QLR) test based on feasible generalized least squares (FGLS). We show that the latter statistics are pivotal under the null, which provides the justification for applying MC tests. Furthermore, we extend the exact independence test proposed by Harvey and Phillips (1982) to the multi-equation framework. Specifically, we introduce several induced tests based on a set of simultaneous Harvey/Phillips-type tests and suggest a simulation-based solution to the associated combination problem. The properties of the proposed tests are studied in a Monte Carlo experiment which shows that standard asymptotic tests exhibit important size distortions, while MC tests achieve complete size control and display good power. Moreover, MC-QLR tests performed best in terms of power, a result of interest from the point of view of simulation-based tests. The power of the MC induced tests improves appreciably in comparison to standard Bonferroni tests and, in certain cases, outperforms the likelihood-based MC tests. The tests are applied to data used by Fischer (1993) to analyze the macroeconomic determinants of growth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we develop finite-sample inference procedures for stationary and nonstationary autoregressive (AR) models. The method is based on special properties of Markov processes and a split-sample technique. The results on Markovian processes (intercalary independence and truncation) only require the existence of conditional densities. They are proved for possibly nonstationary and/or non-Gaussian multivariate Markov processes. In the context of a linear regression model with AR(1) errors, we show how these results can be used to simplify the distributional properties of the model by conditioning a subset of the data on the remaining observations. This transformation leads to a new model which has the form of a two-sided autoregression to which standard classical linear regression inference techniques can be applied. We show how to derive tests and confidence sets for the mean and/or autoregressive parameters of the model. We also develop a test on the order of an autoregression. We show that a combination of subsample-based inferences can improve the performance of the procedure. An application to U.S. domestic investment data illustrates the method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we propose several finite-sample specification tests for multivariate linear regressions (MLR) with applications to asset pricing models. We focus on departures from the assumption of i.i.d. errors assumption, at univariate and multivariate levels, with Gaussian and non-Gaussian (including Student t) errors. The univariate tests studied extend existing exact procedures by allowing for unspecified parameters in the error distributions (e.g., the degrees of freedom in the case of the Student t distribution). The multivariate tests are based on properly standardized multivariate residuals to ensure invariance to MLR coefficients and error covariances. We consider tests for serial correlation, tests for multivariate GARCH and sign-type tests against general dependencies and asymmetries. The procedures proposed provide exact versions of those applied in Shanken (1990) which consist in combining univariate specification tests. Specifically, we combine tests across equations using the MC test procedure to avoid Bonferroni-type bounds. Since non-Gaussian based tests are not pivotal, we apply the “maximized MC” (MMC) test method [Dufour (2002)], where the MC p-value for the tested hypothesis (which depends on nuisance parameters) is maximized (with respect to these nuisance parameters) to control the test’s significance level. The tests proposed are applied to an asset pricing model with observable risk-free rates, using monthly returns on New York Stock Exchange (NYSE) portfolios over five-year subperiods from 1926-1995. Our empirical results reveal the following. Whereas univariate exact tests indicate significant serial correlation, asymmetries and GARCH in some equations, such effects are much less prevalent once error cross-equation covariances are accounted for. In addition, significant departures from the i.i.d. hypothesis are less evident once we allow for non-Gaussian errors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the problem of testing the error distribution in a multivariate linear regression (MLR) model. The tests are functions of appropriately standardized multivariate least squares residuals whose distribution is invariant to the unknown cross-equation error covariance matrix. Empirical multivariate skewness and kurtosis criteria are then compared to simulation-based estimate of their expected value under the hypothesized distribution. Special cases considered include testing multivariate normal, Student t; normal mixtures and stable error models. In the Gaussian case, finite-sample versions of the standard multivariate skewness and kurtosis tests are derived. To do this, we exploit simple, double and multi-stage Monte Carlo test methods. For non-Gaussian distribution families involving nuisance parameters, confidence sets are derived for the the nuisance parameters and the error distribution. The procedures considered are evaluated in a small simulation experi-ment. Finally, the tests are applied to an asset pricing model with observable risk-free rates, using monthly returns on New York Stock Exchange (NYSE) portfolios over five-year subperiods from 1926-1995.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We discuss statistical inference problems associated with identification and testability in econometrics, and we emphasize the common nature of the two issues. After reviewing the relevant statistical notions, we consider in turn inference in nonparametric models and recent developments on weakly identified models (or weak instruments). We point out that many hypotheses, for which test procedures are commonly proposed, are not testable at all, while some frequently used econometric methods are fundamentally inappropriate for the models considered. Such situations lead to ill-defined statistical problems and are often associated with a misguided use of asymptotic distributional results. Concerning nonparametric hypotheses, we discuss three basic problems for which such difficulties occur: (1) testing a mean (or a moment) under (too) weak distributional assumptions; (2) inference under heteroskedasticity of unknown form; (3) inference in dynamic models with an unlimited number of parameters. Concerning weakly identified models, we stress that valid inference should be based on proper pivotal functions —a condition not satisfied by standard Wald-type methods based on standard errors — and we discuss recent developments in this field, mainly from the viewpoint of building valid tests and confidence sets. The techniques discussed include alternative proposed statistics, bounds, projection, split-sampling, conditioning, Monte Carlo tests. The possibility of deriving a finite-sample distributional theory, robustness to the presence of weak instruments, and robustness to the specification of a model for endogenous explanatory variables are stressed as important criteria assessing alternative procedures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The technique of Monte Carlo (MC) tests [Dwass (1957), Barnard (1963)] provides an attractive method of building exact tests from statistics whose finite sample distribution is intractable but can be simulated (provided it does not involve nuisance parameters). We extend this method in two ways: first, by allowing for MC tests based on exchangeable possibly discrete test statistics; second, by generalizing the method to statistics whose null distributions involve nuisance parameters (maximized MC tests, MMC). Simplified asymptotically justified versions of the MMC method are also proposed and it is shown that they provide a simple way of improving standard asymptotics and dealing with nonstandard asymptotics (e.g., unit root asymptotics). Parametric bootstrap tests may be interpreted as a simplified version of the MMC method (without the general validity properties of the latter).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we propose exact inference procedures for asset pricing models that can be formulated in the framework of a multivariate linear regression (CAPM), allowing for stable error distributions. The normality assumption on the distribution of stock returns is usually rejected in empirical studies, due to excess kurtosis and asymmetry. To model such data, we propose a comprehensive statistical approach which allows for alternative - possibly asymmetric - heavy tailed distributions without the use of large-sample approximations. The methods suggested are based on Monte Carlo test techniques. Goodness-of-fit tests are formally incorporated to ensure that the error distributions considered are empirically sustainable, from which exact confidence sets for the unknown tail area and asymmetry parameters of the stable error distribution are derived. Tests for the efficiency of the market portfolio (zero intercepts) which explicitly allow for the presence of (unknown) nuisance parameter in the stable error distribution are derived. The methods proposed are applied to monthly returns on 12 portfolios of the New York Stock Exchange over the period 1926-1995 (5 year subperiods). We find that stable possibly skewed distributions provide statistically significant improvement in goodness-of-fit and lead to fewer rejections of the efficiency hypothesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cet article illustre l’applicabilité des méthodes de rééchantillonnage dans le cadre des tests multiples (simultanés), pour divers problèmes économétriques. Les hypothèses simultanées sont une conséquence habituelle de la théorie économique, de sorte que le contrôle de la probabilité de rejet de combinaisons de tests est un problème que l’on rencontre fréquemment dans divers contextes économétriques et statistiques. À ce sujet, on sait que le fait d’ignorer le caractère conjoint des hypothèses multiples peut faire en sorte que le niveau de la procédure globale dépasse considérablement le niveau désiré. Alors que la plupart des méthodes d’inférence multiple sont conservatrices en présence de statistiques non-indépendantes, les tests que nous proposons visent à contrôler exactement le niveau de signification. Pour ce faire, nous considérons des critères de test combinés proposés initialement pour des statistiques indépendantes. En appliquant la méthode des tests de Monte Carlo, nous montrons comment ces méthodes de combinaison de tests peuvent s’appliquer à de tels cas, sans recours à des approximations asymptotiques. Après avoir passé en revue les résultats antérieurs sur ce sujet, nous montrons comment une telle méthodologie peut être utilisée pour construire des tests de normalité basés sur plusieurs moments pour les erreurs de modèles de régression linéaires. Pour ce problème, nous proposons une généralisation valide à distance finie du test asymptotique proposé par Kiefer et Salmon (1983) ainsi que des tests combinés suivant les méthodes de Tippett et de Pearson-Fisher. Nous observons empiriquement que les procédures de test corrigées par la méthode des tests de Monte Carlo ne souffrent pas du problème de biais (ou sous-rejet) souvent rapporté dans cette littérature – notamment contre les lois platikurtiques – et permettent des gains sensibles de puissance par rapport aux méthodes combinées usuelles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Contexte. Les phénotypes ABO et Rh(D) des donneurs de sang ainsi que des patients transfusés sont analysés de façon routinière pour assurer une complète compatibilité. Ces analyses sont accomplies par agglutination suite à une réaction anticorps-antigènes. Cependant, pour des questions de coûts et de temps d’analyses faramineux, les dons de sang ne sont pas testés sur une base routinière pour les antigènes mineurs du sang. Cette lacune peut résulter à une allo-immunisation des patients receveurs contre un ou plusieurs antigènes mineurs et ainsi amener des sévères complications pour de futures transfusions. Plan d’étude et Méthodes. Pour ainsi aborder le problème, nous avons produit un panel génétique basé sur la technologie « GenomeLab _SNPstream» de Beckman Coulter, dans l’optique d’analyser simultanément 22 antigènes mineurs du sang. La source d’ADN provient des globules blancs des patients préalablement isolés sur papiers FTA. Résultats. Les résultats démontrent que le taux de discordance des génotypes, mesuré par la corrélation des résultats de génotypage venant des deux directions de l’ADN, ainsi que le taux d’échec de génotypage sont très bas (0,1%). Également, la corrélation entre les résultats de phénotypes prédit par génotypage et les phénotypes réels obtenus par sérologie des globules rouges et plaquettes sanguines, varient entre 97% et 100%. Les erreurs expérimentales ou encore de traitement des bases de données ainsi que de rares polymorphismes influençant la conformation des antigènes, pourraient expliquer les différences de résultats. Cependant, compte tenu du fait que les résultats de phénotypages obtenus par génotypes seront toujours co-vérifiés avant toute transfusion sanguine par les technologies standards approuvés par les instances gouvernementales, les taux de corrélation obtenus sont de loin supérieurs aux critères de succès attendus pour le projet. Conclusion. Le profilage génétique des antigènes mineurs du sang permettra de créer une banque informatique centralisée des phénotypes des donneurs, permettant ainsi aux banques de sang de rapidement retrouver les profiles compatibles entre les donneurs et les receveurs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We complete the development of a testing ground for axioms of discrete stochastic choice. Our contribution here is to develop new posterior simulation methods for Bayesian inference, suitable for a class of prior distributions introduced by McCausland and Marley (2013). These prior distributions are joint distributions over various choice distributions over choice sets of di fferent sizes. Since choice distributions over di fferent choice sets can be mutually dependent, previous methods relying on conjugate prior distributions do not apply. We demonstrate by analyzing data from a previously reported experiment and report evidence for and against various axioms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectif : Étudier les mécanismes apoptotiques impliqués dans la néphropathie diabétique en identifiant les gènes responsables de l’apoptose et activés par les espèces réactives de l’oxygène (ROS) dans les cellules de tubules proximaux rénaux (RPTC) de différents modèles diabétiques. Méthodes : Une hybridation par puce à AND a été réalisée sur les ARN extraits à partir de RPTC de souris heterozygotes db/m+, db/db and db/db catalase (CAT)-transgénique (Tg) de 20 semaines. Des expériences de PCR en temps réel et d’immunohistochimie réalisées sur ces modèles et sur le modèle ou le diabète avait été induit par traitement au streptozotocin (STZ) ont permis de valider les gènes apoptotiques identifiés par puce à ADN. Des RPTC immortalisées de rat ont été utilisées pour montrer l’activité de ces gènes apoptotique et la régulation de leur expression. De plus, une étude additionnelle réalisée sur des sections rénales provenant de patients diabétiques et non diabétiques a démontré également une surexpression de ces gènes apoptotiques dans les IRPTC. Résultats: L’expression de Bcl-2-modifying factor (Bmf), une protéine apoptotique, semble augmentée dans les RPTC de souris db/db comparé aux souris contrôles db/m+, ou aux souris db/db CAT-tg. La surexpression de Bmf a également été identifiée dans les RPTC du modèle diabétique STZ. La normalisation de l’hyperglycémie chez ces souris par traitement à l’insuline semble normaliser également l’expression de Bmf. In vitro, la surexpression du cDNA de Bmf dans les RPTC promouvoit l’apoptose et augmente l’activité de caspase 3. La stimulation de RPTC de Rat avec le glucose élevé (25mM de D-glucose) semble augmenter l’expression de Bmf et le traitement de ces cellules avec la roténone, les Diphénylène iodonium, la catalase et l’apocynine semble renverser cette stimulation. L’inhibition de Bmf avec un siRNA semble réduire l’apoptose induite par le glucose élevé. L’expression de Bmf a également été démontrée dans les RPTC de patients diabétiques. Conclusion: Ces résultats ont démontré une surexpression de Bmf dans les RPTC de différents modèles diabétiques et suggèrent son potentiel rôle dans la régulation de l’apoptose et de l’atrophie tubulaire chez les diabétiques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An asymmetric coplanar strip (ACS) fed dual band F-shaped antenna covering the 2.4/5.2 GHz WLAN bands is presented. The optimized dimensions of the proposed uniplanar antenna are 21 mm × 19 mm when printed on a substrate of dielectric constant 4.4 and height 1.6 mm. The dual band nature of the antenna is brought about by the various current paths in the F-shaped structure and the ground plane. The antenna exhibits nearly omnidirectional radiation characteristics and moderate gain in both the operating bands. Details of the antenna design, simulation, and experimental results are presented and discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spanning avalanches in the 3D Gaussian Random Field Ising Model (3D-GRFIM) with metastable dynamics at T=0 have been studied. Statistical analysis of the field values for which avalanches occur has enabled a Finite-Size Scaling (FSS) study of the avalanche density to be performed. Furthermore, a direct measurement of the geometrical properties of the avalanches has confirmed an earlier hypothesis that several types of spanning avalanches with two different fractal dimensions coexist at the critical point. We finally compare the phase diagram of the 3D-GRFIM with metastable dynamics with the same model in equilibrium at T=0.