967 resultados para Atomic coherence
Resumo:
Alkali vapours, such as rubidium, are being used extensively in several important fields of research such as slow and stored light nonlinear optics quantum computation, atomic clocks and magnetometers. Recently, there is a growing effort towards miniaturizing traditional centimetre-size vapour cells. Owing to the significant reduction in device dimensions, light-matter interactions are greatly enhanced, enabling new functionalities due to the low power threshold needed for nonlinear interactions. Here, taking advantage of the mature platform of silicon photonics, we construct an efficient and flexible platform for tailored light-vapour interactions on a chip. Specifically, we demonstrate light-matter interactions in an atomic cladding waveguide, consisting of a silicon nitride nano-waveguide core with a rubidium vapour cladding. We observe the efficient interaction of the electromagnetic guided mode with the rubidium cladding and show that due to the high confinement of the optical mode, the rubidium absorption saturates at powers in the nanowatt regime.
Resumo:
Algal bloom phenomenon was defined as "the rapid growth of one or more phytoplankton species which leads to a rapid increase in the biomass of phytoplankton", yet most estimates of temporal coherence are based on yearly or monthly sampling frequencies and little is known of how synchrony varies among phytoplankton or of the causes of temporal coherence during spring algal bloom. In this study, data of chlorophyll a and related environmental parameters were weekly gathered at 15 sampling sites in Xiangxi Bay of Three-Gorges Reservoir (TGR, China) to evaluate patterns of temporal coherence for phytoplankton during spring bloom and test if spatial heterogeneity of nutrient and inorganic suspended particles within a single ecosystem influences synchrony of spring phytoplankton dynamics. There is a clear spatial and temporal variation in chlorophyll a across Xiangxi Bay. The degree of temporal coherence for chlorophyll a between pairs of sites located in Xiangxi Bay ranged from -0.367 to 0.952 with mean and median values of 0.349 and 0.321, respectively. Low levels of temporal coherence were often detected among the three stretches of the bay (Down reach, middle reach and upper reach), while high levels of temporal coherence were often found within the same reach of the bay. The relative difference of DIN between pair sites was the strong predictor of temporal coherence for chlorophyll a in down and middle reach of the bay, while the relative difference in Anorganic Suspended Solids was the important factor regulating temporal coherence in middle and upper reach. Contrary to many studies, these results illustrate that, in a small geographic area (a single reservoir bay of approximately 25 km), spatial heterogeneity influence synchrony of phytoplankton dynamics during spring bloom and local processes may override the effects of regional processes or dispersal.
Resumo:
We experimentally demonstrate two-photon Doppler free interactions on a chip-scale platform consisting of a silicon nitride waveguide integrated with rubidium vapor cladding. We obtain absorption lines having widths of 300 MHz, using low power levels. © OSA 2013.
Resumo:
We experimentally demonstrate two-photon Doppler free interactions on a chip-scale platform consisting of a silicon nitride waveguide integrated with rubidium vapor cladding. We obtain absorption lines having widths of 300 MHz, using low power levels. © OSA 2013.
Resumo:
We experimentally demonstrate light-matter interactions on a chip, consisting of a silicon nitride wave-guide integrated with rubidium vapor cladding. The measured absorption spectra provide indications for low light nonlinear interactions. © 2012 OSA.
Resumo:
We experimentally demonstrate light-matter interactions on a chip, consisting of a silicon nitride wave-guide integrated with rubidium vapor cladding. The measured absorption spectra provide indications for low light nonlinear interactions. © OSA 2012.
Resumo:
A rapid and sensitive method for separation and determination of Cr(VI) and Cr(III) in bottom mud of lake by flow injection on-line preconcentrtion system and GFAAS was developed. The available Cr(VI) and Cr(III) were extracted by HOAc or EDTA + NH4 NO3 and adsorbed simultaneously by an anion and a cation resin microclummn and then eluted simultaneously by 2 mol/L NH4 NO3 + 0.05 mol/L ascorbate and 2 mol/L H2SO4, respectively. The elution was performed for 50 s after adsorption for 2 min, and the efficiencies of elution were 85.4% - 94.8% and 96.7% - 106% for Cr(VI) and Cr(M) respectively. The detection limits of the method were 0.9 mu g/L and 2.7 mu g/L with relative standard deviations of 3.5% and 6.4% for the determination of Cr(VI) and Cr(III) in sample, respectively.
Resumo:
The structure, formation energy, and energy levels of the various oxygen vacancies in Ta2O5 have been calculated using the λ phase model. The intra-layer vacancies give rise to unusual, long-range bonding rearrangements, which are different for each defect charge state. The 2-fold coordinated intra-layer vacancy is the lowest cost vacancy and forms a deep level 1.5 eV below the conduction band edge. The 3-fold intra-layer vacancy and the 2-fold inter-layer vacancy are higher cost defects, and form shallower levels. The unusual bonding rearrangements lead to low oxygen migration barriers, which are useful for resistive random access memory applications. © 2014 AIP Publishing LLC.
Resumo:
We have grown carbon nanotubes using Fe and Ni catalyst films deposited by atomic layer deposition. Both metals lead to catalytically active nanoparticles for growing vertically aligned nanotube forests or carbon fibres, depending on the growth conditions and whether the substrate is alumina or silica. The resulting nanotubes have narrow diameter and wall number distributions that are as narrow as those grown from sputtered catalysts. The state of the catalyst is studied by in-situ and ex-situ X-ray photoemission spectroscopy. We demonstrate multi-directional nanotube growth on a porous alumina foam coated with Fe prepared by atomic layer deposition. This deposition technique can be useful for nanotube applications in microelectronics, filter technology, and energy storage. © 2014 AIP Publishing LLC.
Resumo:
This article presents the investigation of frequency and temporal coherence properties of distributed Bragg reflector laser. In this scheme, a square-wavefrom voltage is applied to the phase section of the laser to little optical wavelength, and delayed optical heterodyne technique is used for the analysis of spectral characteristics. Experiments show that lightwaves emitted from the same active region asynchronously are partially frequency and temporal coherent. When the two wavelengths are closer, the two waves are strong v coherent, and the coherence properties get weak as the delay v time increases. (C) 2010 Wiley Periodicals, Inc. Microwave Opt Technol Left 52: 822-825, 2010 Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/mop.25031
Resumo:
Photon quantum statistics of light can be shown by the high-order coherence. The fourth-order coherences of various quantum states including Pock states, coherent states, thermal states and squeezed vacuum states are investigated based on a double Banbury Brown Twiss (HBT) scheme. The analytical results are obtained by taking the overall efficiency and background into account.
Resumo:
Coherence evolution and echo effect of an electron spin, which is coupled inhomogeneously to an interacting one-dimensional finite spin bath via hyperfine-type interaction, are studied using the adaptive time-dependent density-matrix renormalization group method. It is found that the interplay of the coupling inhomogeneity and the transverse intrabath interactions results in two qualitatively different coherence evolutions, namely, a coherence-preserving evolution characterized by periodic oscillation and a complete decoherence evolution. Correspondingly, the echo effects induced by an electron-spin flip at time tau exhibit stable recoherence pulse sequence for the periodic evolution and a single peak at root 2 tau for the decoherence evolution, respectively. With the diagonal intrabath interaction included, the specific feature of the periodic regime is kept, while the root 2 tau-type echo effect in the decoherence regime is significantly affected. To render the experimental verifications possible, the Hahn echo envelope as a function of tau is calculated, which eliminates the inhomogeneous broadening effect and serves for the identification of the different status of the dynamic coherence evolution, periodic versus decoherence.