994 resultados para Astronomical Instrumentation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sparse representation of astronomical images is discussed. It is shown that a significant gain in sparsity is achieved when particular mixed dictionaries are used for approximating these types of images with greedy selection strategies. Experiments are conducted to confirm (i) the effectiveness at producing sparse representations and (ii) competitiveness, with respect to the time required to process large images. The latter is a consequence of the suitability of the proposed dictionaries for approximating images in partitions of small blocks. This feature makes it possible to apply the effective greedy selection technique called orthogonal matching pursuit, up to some block size. For blocks exceeding that size, a refinement of the original matching pursuit approach is considered. The resulting method is termed "self-projected matching pursuit," because it is shown to be effective for implementing, via matching pursuit itself, the optional backprojection intermediate steps in that approach. © 2013 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ACM Computing Classification System (1998): J.2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ACM Computing Classification System (1998): J.2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ACM Computing Classification System (1998): J.2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ACM Computing Classification System (1998): J.2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ACM Computing Classification System (1998): H.5.2, H.2.8, J.2, H.5.3.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ACM Computing Classification System (1998): I.2.8, I.2.10, I.5.1, J.2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ACM Computing Classification System (1998): I.7, I.7.5.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Supervisory Control & Data Acquisition (SCADA) systems are used by many industries because of their ability to manage sensors and control external hardware. The problem with commercially available systems is that they are restricted to a local network of users that use proprietary software. There was no Internet development guide to give remote users out of the network, control and access to SCADA data and external hardware through simple user interfaces. To solve this problem a server/client paradigm was implemented to make SCADAs available via the Internet. Two methods were applied and studied: polling of a text file as a low-end technology solution and implementing a Transmission Control Protocol (TCP/IP) socket connection. Users were allowed to login to a website and control remotely a network of pumps and valves interfaced to a SCADA. This enabled them to sample the water quality of different reservoir wells. The results were based on real time performance, stability and ease of use of the remote interface and its programming. These indicated that the most feasible server to implement is the TCP/IP connection. For the user interface, Java applets and Active X controls provide the same real time access.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a methodology to emulate Single Event Upsets (SEUs) in FPGA flip-flops (FFs). Since the content of a FF is not modifiable through the FPGA configuration memory bits, a dedicated design is required for fault injection in the FFs. The method proposed in this paper is a hybrid approach that combines FPGA partial reconfiguration and extra logic added to the circuit under test, without modifying its operation. This approach has been integrated into a fault-injection platform, named NESSY (Non intrusive ErrorS injection SYstem), developed by our research group. Finally, this paper includes results on a Virtex-5 FPGA demonstrating the validity of the method on the ITC’99 benchmark set and a Feed-Forward Equalization (FFE) filter. In comparison with other approaches in the literature, this methodology reduces the resource consumption introduced to carry out the fault injection in FFs, at the cost of adding very little time overhead (1.6 �μs per fault).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Deciphering the driving mechanisms of Earth system processes, including the climate dynamics expressed as paleoceanographic events, requires a complete, continuous, and high-resolution stratigraphy that is very accurately dated. In this study, we construct a robust astronomically calibrated age model for the middle Eocene to early Oligocene interval (31-43 Ma) in order to permit more detailed study of the exceptional climatic events that occurred during this time, including the Middle Eocene Climate Optimum and the Eocene/Oligocene transition. A goal of this effort is to accurately date the middle Eocene to early Oligocene composite section cored during the Pacific Equatorial Age Transect (PEAT, IODP Exp. 320/321). The stratigraphic framework for the new time scale is based on the identification of the stable long eccentricity cycle in published and new high-resolution records encompassing bulk and benthic stable isotope, calibrated XRF core scanning, and magnetostratigraphic data from ODP Sites 171B-1052, 189-1172, 199-1218, and 207-1260 as well as IODP Sites 320-U1333, and -U1334 spanning magnetic polarity Chrons C12n to C20n. Subsequently we applied orbital tuning of the records to the La2011 orbital solution. The resulting new time scale revises and refines the existing orbitally tuned age model and the Geomagnetic Polarity Time Scale from 31 to 43 Ma. Our newly defined absolute age for the Eocene/Oligocene boundary validates the astronomical tuned age of 33.89 Ma identified at the Massignano (Italy) global stratotype section and point. Our compilation of geochemical records of climate-controlled variability in sedimentation through the middle-to-late Eocene and early Oligocene demonstrates strong power in the eccentricity band that is readily tuned to the latest astronomical solution. Obliquity driven cyclicity is only apparent during very long eccentricity cycle minima around 35.5 Ma, 38.3 Ma and 40.1 Ma.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Accurate age models are a tool of utmost important in paleoclimatology. Constraining the rate and pace of past climate change are at the core of paleoclimate research, as such knowledge is crucial to our understanding of the climate system. Indeed, it allows for the disentanglement of the various drivers of climate change. The scarcity of highly resolved sedimentary records from the middle Eocene (Bartonian - Lutetian Stages; 47.8 - 37.8 Ma) has led to the existence of the "Eocene astronomical time scale gap" and hindered the establishment of a comprehensive astronomical time scale (ATS) for the entire Cenozoic. Sediments from the Newfoundland Ridge drilled during Integrated Ocean Drilling Program (IODP) Expedition 342 span the Eocene gap at an unprecedented stratigraphic resolution with carbonate bearing sediments. Moreover, these sediments exhibit cyclic lithological changes that allow for an astronomical calibration of geologic time. In this study, we use the dominant obliquity imprint in XRF-derived calcium-iron ratio series (Ca/Fe) from three sites drilled during IODP Expedition 342 (U1408, U1409, U1410) to construct a floating astrochronology. We then anchor this chronology to numerical geological time by tuning 173-kyr cycles in the amplitude modulation pattern of obliquity to an astronomical solution. This study is one of the first to use the 173-kyr obliquity amplitude cycle for astrochronologic purposes, as previous studies primarily use the 405-kyr long eccentricity cycle as a tuning target to calibrate the Paleogene geologic time scale. We demonstrate that the 173-kyr cycles in obliquity's amplitude are stable between 40 and 50 Ma, which means that one can use the 173-kyr cycle for astrochronologic calibration in the Eocene. Our tuning provides new age estimates for magnetochron reversals C18n.1n - C21r and a stratigraphic framework for key sites from Expedition 342 for the Eocene. Some disagreements emerge when we compare our tuning for the interval between C19r and C20r with previous tuning attempts from the South Atlantic. We therefore present a revision of the original astronomical interpretations for the latter records, so that the various astrochronologic age models for the middle Eocene in the North- and South-Atlantic are consistent.