885 resultados para Artificial Information Models
Resumo:
Actualment a l'Estat espanyol s'està implantant el Pla Bolonya per incorporar-se a l'Espai Europeu d'Estudis Superiors (l'EEES). Com a un dels principals objectius, l'EEES pretén homogeneïtzar els estudis i de manera concreta les competències adquirides per qualsevol estudiant independentment d'on hagi realitzat els seus estudis. Per això, existeixen iniciatives europees (com el projecte Tuning) que treballen per definir competències per a totes les titulacions universitàries.El projecte presenta l'anàlisi realitzat sobre vint Universitats de diferents continents per identificar models d'ensenyament-aprenentatge de competències no tècniques. La recerca es centra addicionalment en la competència comunicativa escrita.La font principal de dades ha estat la informació proporcionada a les pàgines Web de les universitats i molt especialment els seus plans d'estudi.
Resumo:
Using numerical simulations we investigate shapes of random equilateral open and closed chains, one of the simplest models of freely fluctuating polymers in a solution. We are interested in the 3D density distribution of the modeled polymers where the polymers have been aligned with respect to their three principal axes of inertia. This type of approach was pioneered by Theodorou and Suter in 1985. While individual configurations of the modeled polymers are almost always nonsymmetric, the approach of Theodorou and Suter results in cumulative shapes that are highly symmetric. By taking advantage of asymmetries within the individual configurations, we modify the procedure of aligning independent configurations in a way that shows their asymmetry. This approach reveals, for example, that the 3D density distribution for linear polymers has a bean shape predicted theoretically by Kuhn. The symmetry-breaking approach reveals complementary information to the traditional, symmetrical, 3D density distributions originally introduced by Theodorou and Suter.
Resumo:
A wide range of numerical models and tools have been developed over the last decades to support the decision making process in environmental applications, ranging from physical models to a variety of statistically-based methods. In this study, a landslide susceptibility map of a part of Three Gorges Reservoir region of China was produced, employing binary logistic regression analyses. The available information includes the digital elevation model of the region, geological map and different GIS layers including land cover data obtained from satellite imagery. The landslides were observed and documented during the field studies. The validation analysis is exploited to investigate the quality of mapping.
Resumo:
Aquest document de treball mira d'establir un nou camp d'investigació a la cruïlla entre els fluxos de migració i d'informació i comunicació. Hi ha diversos factors que fan que valgui la pena adoptar aquesta perspectiva. El punt central és que la migració internacional contemporània és incrustada en la dinàmica de la societat de la informació, seguint models comuns i dinàmiques interconnectades. Per consegüent, s'està començant a identificar els fluxos d'informació com a qüestions clau en les polítiques de migració. A més, hi ha una manca de coneixement empíric en el disseny de xarxes d'informació i l'ús de les tecnologies d'informació i comunicació en contextos migratoris. Aquest document de treball també mira de ser una font d'hipòtesis per a investigacions posteriors.
Resumo:
Despite the wealth of information generated by trans-disciplinary research in Chagas disease, knowledge about its multifaceted pathogenesis is still fragmented. Here we review the body of experimental studies in animal models supporting the concept that persistent infection by Trypanosoma cruzi is crucial for the development of chronic myocarditis. Complementing this review, we will make an effort to reconcile seemingly contradictory results concerning the immune profiles of chronic patients from Argentina and Brazil. Finally, we will review the results of molecular studies suggesting that parasite-induced inflammation and tissue damage is, at least in part, mediated by the activities of trans-sialidase, mucin-linked lipid anchors (TLR2 ligand) and cruzipain (a kinin-releasing cysteine protease). One hundred years after the discovery of Chagas disease, it is reassuring that basic and clinical research tends to converge, raising new perspectives for the treatment of chronic Chagas disease.
Resumo:
In this paper we present a novel structure from motion (SfM) approach able to infer 3D deformable models from uncalibrated stereo images. Using a stereo setup dramatically improves the 3D model estimation when the observed 3D shape is mostly deforming without undergoing strong rigid motion. Our approach first calibrates the stereo system automatically and then computes a single metric rigid structure for each frame. Afterwards, these 3D shapes are aligned to a reference view using a RANSAC method in order to compute the mean shape of the object and to select the subset of points on the object which have remained rigid throughout the sequence without deforming. The selected rigid points are then used to compute frame-wise shape registration and to extract the motion parameters robustly from frame to frame. Finally, all this information is used in a global optimization stage with bundle adjustment which allows to refine the frame-wise initial solution and also to recover the non-rigid 3D model. We show results on synthetic and real data that prove the performance of the proposed method even when there is no rigid motion in the original sequence
Resumo:
Since 2008, Intelligence units of six states of the western part of Switzerland have been sharing a common database for the analysis of high volume crimes. On a daily basis, events reported to the police are analysed, filtered and classified to detect crime repetitions and interpret the crime environment. Several forensic outcomes are integrated in the system such as matches of traces with persons, and links between scenes detected by the comparison of forensic case data. Systematic procedures have been settled to integrate links assumed mainly through DNA profiles, shoemarks patterns and images. A statistical outlook on a retrospective dataset of series from 2009 to 2011 of the database informs for instance on the number of repetition detected or confirmed and increased by forensic case data. Time needed to obtain forensic intelligence in regard with the type of marks treated, is seen as a critical issue. Furthermore, the underlying integration process of forensic intelligence into the crime intelligence database raised several difficulties in regards of the acquisition of data and the models used in the forensic databases. Solutions found and adopted operational procedures are described and discussed. This process form the basis to many other researches aimed at developing forensic intelligence models.
Resumo:
Gene-on-gene regulations are key components of every living organism. Dynamical abstract models of genetic regulatory networks help explain the genome's evolvability and robustness. These properties can be attributed to the structural topology of the graph formed by genes, as vertices, and regulatory interactions, as edges. Moreover, the actual gene interaction of each gene is believed to play a key role in the stability of the structure. With advances in biology, some effort was deployed to develop update functions in Boolean models that include recent knowledge. We combine real-life gene interaction networks with novel update functions in a Boolean model. We use two sub-networks of biological organisms, the yeast cell-cycle and the mouse embryonic stem cell, as topological support for our system. On these structures, we substitute the original random update functions by a novel threshold-based dynamic function in which the promoting and repressing effect of each interaction is considered. We use a third real-life regulatory network, along with its inferred Boolean update functions to validate the proposed update function. Results of this validation hint to increased biological plausibility of the threshold-based function. To investigate the dynamical behavior of this new model, we visualized the phase transition between order and chaos into the critical regime using Derrida plots. We complement the qualitative nature of Derrida plots with an alternative measure, the criticality distance, that also allows to discriminate between regimes in a quantitative way. Simulation on both real-life genetic regulatory networks show that there exists a set of parameters that allows the systems to operate in the critical region. This new model includes experimentally derived biological information and recent discoveries, which makes it potentially useful to guide experimental research. The update function confers additional realism to the model, while reducing the complexity and solution space, thus making it easier to investigate.
Resumo:
Quantitative or algorithmic trading is the automatization of investments decisions obeying a fixed or dynamic sets of rules to determine trading orders. It has increasingly made its way up to 70% of the trading volume of one of the biggest financial markets such as the New York Stock Exchange (NYSE). However, there is not a signi cant amount of academic literature devoted to it due to the private nature of investment banks and hedge funds. This projects aims to review the literature and discuss the models available in a subject that publications are scarce and infrequently. We review the basic and fundamental mathematical concepts needed for modeling financial markets such as: stochastic processes, stochastic integration and basic models for prices and spreads dynamics necessary for building quantitative strategies. We also contrast these models with real market data with minutely sampling frequency from the Dow Jones Industrial Average (DJIA). Quantitative strategies try to exploit two types of behavior: trend following or mean reversion. The former is grouped in the so-called technical models and the later in the so-called pairs trading. Technical models have been discarded by financial theoreticians but we show that they can be properly cast into a well defined scientific predictor if the signal generated by them pass the test of being a Markov time. That is, we can tell if the signal has occurred or not by examining the information up to the current time; or more technically, if the event is F_t-measurable. On the other hand the concept of pairs trading or market neutral strategy is fairly simple. However it can be cast in a variety of mathematical models ranging from a method based on a simple euclidean distance, in a co-integration framework or involving stochastic differential equations such as the well-known Ornstein-Uhlenbeck mean reversal ODE and its variations. A model for forecasting any economic or financial magnitude could be properly defined with scientific rigor but it could also lack of any economical value and be considered useless from a practical point of view. This is why this project could not be complete without a backtesting of the mentioned strategies. Conducting a useful and realistic backtesting is by no means a trivial exercise since the \laws" that govern financial markets are constantly evolving in time. This is the reason because we make emphasis in the calibration process of the strategies' parameters to adapt the given market conditions. We find out that the parameters from technical models are more volatile than their counterpart form market neutral strategies and calibration must be done in a high-frequency sampling manner to constantly track the currently market situation. As a whole, the goal of this project is to provide an overview of a quantitative approach to investment reviewing basic strategies and illustrating them by means of a back-testing with real financial market data. The sources of the data used in this project are Bloomberg for intraday time series and Yahoo! for daily prices. All numeric computations and graphics used and shown in this project were implemented in MATLAB^R scratch from scratch as a part of this thesis. No other mathematical or statistical software was used.
Resumo:
OBJETIVE: To report the data of the Home Parenteral Nutrition (HPN) registry of the NADYA-SENPE working group for the years 2011 and 2012. METHODOLOGY: We compiled the data from the on-line registry introduced by reviewers of NADYA group responsible for monitoring of NPD introduced by since January 1, 2011 to december 31, 2012. Included fields were: age, sex, diagnosis and reason for HPN, access path, complications, beginning and end dates, complementary oral or enteral nutrition, activity level, autonomy degree, product and fungible material supply, withdrawal reason and intestinal transplant indication. RESULTS: Year 2010: 184 patients from 29 hospitals , representing a rate of 3.98 patients/million inhabitants/ year 2011, with 186 episodes were recorded NPD . During 2012, 203 patients from 29 hospitals , representing a rate of 4.39 patients/million inhabitants/year 2012 , a total of 211 episodes were recorded NPD . CONCLUSIONS: We observe an increase in registered patients with respect to previous years.Neoplasia remains as the main pathology since 2003. Although NADYA is consolidated registry and has been indispensable source of information relevant to the understanding of the progress of Home Artificial Nutrition in our country, there is ample room for improvement. Especially that refers to the registration of pediatric patients and the registration of complications.
Resumo:
Time-lapse geophysical data acquired during transient hydrological experiments are being increasingly employed to estimate subsurface hydraulic properties at the field scale. In particular, crosshole ground-penetrating radar (GPR) data, collected while water infiltrates into the subsurface either by natural or artificial means, have been demonstrated in a number of studies to contain valuable information concerning the hydraulic properties of the unsaturated zone. Previous work in this domain has considered a variety of infiltration conditions and different amounts of time-lapse GPR data in the estimation procedure. However, the particular benefits and drawbacks of these different strategies as well as the impact of a variety of key and common assumptions remain unclear. Using a Bayesian Markov-chain-Monte-Carlo stochastic inversion methodology, we examine in this paper the information content of time-lapse zero-offset-profile (ZOP) GPR traveltime data, collected under three different infiltration conditions, for the estimation of van Genuchten-Mualem (VGM) parameters in a layered subsurface medium. Specifically, we systematically analyze synthetic and field GPR data acquired under natural loading and two rates of forced infiltration, and we consider the value of incorporating different amounts of time-lapse measurements into the estimation procedure. Our results confirm that, for all infiltration scenarios considered, the ZOP GPR traveltime data contain important information about subsurface hydraulic properties as a function of depth, with forced infiltration offering the greatest potential for VGM parameter refinement because of the higher stressing of the hydrological system. Considering greater amounts of time-lapse data in the inversion procedure is also found to help refine VGM parameter estimates. Quite importantly, however, inconsistencies observed in the field results point to the strong possibility that posterior uncertainties are being influenced by model structural errors, which in turn underlines the fundamental importance of a systematic analysis of such errors in future related studies.
Resumo:
Our work is concerned with user modelling in open environments. Our proposal then is the line of contributions to the advances on user modelling in open environments thanks so the Agent Technology, in what has been called Smart User Model. Our research contains a holistic study of User Modelling in several research areas related to users. We have developed a conceptualization of User Modelling by means of examples from a broad range of research areas with the aim of improving our understanding of user modelling and its role in the next generation of open and distributed service environments. This report is organized as follow: In chapter 1 we introduce our motivation and objectives. Then in chapters 2, 3, 4 and 5 we provide the state-of-the-art on user modelling. In chapter 2, we give the main definitions of elements described in the report. In chapter 3, we present an historical perspective on user models. In chapter 4 we provide a review of user models from the perspective of different research areas, with special emphasis on the give-and-take relationship between Agent Technology and user modelling. In chapter 5, we describe the main challenges that, from our point of view, need to be tackled by researchers wanting to contribute to advances in user modelling. From the study of the state-of-the-art follows an exploratory work in chapter 6. We define a SUM and a methodology to deal with it. We also present some cases study in order to illustrate the methodology. Finally, we present the thesis proposal to continue the work, together with its corresponding work scheduling and temporalisation
Information overload, choice deferral, and moderating role of need for cognition: Empirical evidence
Resumo:
ABSTRACT Choice deferral due to information overload is an undesirable result of competitive environments. The neoclassical maximization models predict that choice avoidance will not increase as more information is offered to consumers. The theories developed in the consumer behavior field predict that some properties of the environment may lead to behavioral effects and an increase in choice avoidance due to information overload. Based on stimuli generated experimentally and tested among 1,000 consumers, this empirical research provides evidence for the presence of behavioral effects due to information overload and reveals the different effects of increasing the number of options or the number of attributes. This study also finds that the need for cognition moderates these behavioral effects, and it proposes psychological processes that may trigger the effects observed.
Resumo:
Background: Single nucleotide polymorphisms (SNPs) are the most frequent type of sequence variation between individuals, and represent a promising tool for finding genetic determinants of complex diseases and understanding the differences in drug response. In this regard, it is of particular interest to study the effect of non-synonymous SNPs in the context of biological networks such as cell signalling pathways. UniProt provides curated information about the functional and phenotypic effects of sequence variation, including SNPs, as well as on mutations of protein sequences. However, no strategy has been developed to integrate this information with biological networks, with the ultimate goal of studying the impact of the functional effect of SNPs in the structure and dynamics of biological networks. Results: First, we identified the different challenges posed by the integration of the phenotypic effect of sequence variants and mutations with biological networks. Second, we developed a strategy for the combination of data extracted from public resources, such as UniProt, NCBI dbSNP, Reactome and BioModels. We generated attribute files containing phenotypic and genotypic annotations to the nodes of biological networks, which can be imported into network visualization tools such as Cytoscape. These resources allow the mapping and visualization of mutations and natural variations of human proteins and their phenotypic effect on biological networks (e.g. signalling pathways, protein-protein interaction networks, dynamic models). Finally, an example on the use of the sequence variation data in the dynamics of a network model is presented. Conclusion: In this paper we present a general strategy for the integration of pathway and sequence variation data for visualization, analysis and modelling purposes, including the study of the functional impact of protein sequence variations on the dynamics of signalling pathways. This is of particular interest when the SNP or mutation is known to be associated to disease. We expect that this approach will help in the study of the functional impact of disease-associated SNPs on the behaviour of cell signalling pathways, which ultimately will lead to a better understanding of the mechanisms underlying complex diseases.