982 resultados para Argon-36
Resumo:
The incretin hormone glucagon-like peptide-1(7-36)amide (GLP-1) has been deemed of considerable importance in the regulation of blood glucose. Its effects, mediated through the regulation of insulin, glucagon, and somatostatin, are glucose-dependent and contribute to the tight control of glucose levels. Much enthusiasm has been assigned to a possible role of GLP-1 in the treatment of type 2 diabetes. GLIP-l's action unfortunately is limited through enzymatic inactivation caused by dipeptidylpeptidase IV (DPP IV). It is now well established that modifying GLP-1 at the N-terminal amino acids, His(7) and Ala(8), can greatly improve resistance to this enzyme. Little research has assessed what effect Glu(9)-substitution has on GLP-1 activity and its degradation by DPP IV. Here, we report that the replacement of Glu(9) of GLP-1 with Lys dramatically increased resistance to DPP IV. This analogue, (Lys(9))GLP-1, exhibited a preserved GLP-1 receptor affinity, but the usual stimulatory effects of GLP-1 were completely eliminated, a trait duplicated by the other established GLP-1-antagonists, exendin (9-39) and GLP-1 (9-36)amide. We investigated the in vivo antagonistic actions of (Lys(9))GLP-1 in comparison with GLP-1(9-36)amide and exendin (9-39) and revealed that this novel analogue may serve as a functional antagonist of the GLP-1 receptor. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
Comparisons of 2D fluid simulations with experimental measurements of Ar/Cl-2 plasmas in a low-pressure inductively coupled reactor are reported. Simulations show that the wall recombination coefficient of Cl atom (gamma) is a crucial parameter of the model and that neutral densities are very sensitive to its variations. The best agreement between model and experiment is obtained for gamma = 0.02, which is much lower than the value predicted for stainless steel walls (gamma = 0.6). This is consistent with reactor wall contaminations classically observed in such discharges. The electron density, negative ion fraction and Cl atom density have been investigated under various conditions of chlorine and argon concentrations, gas pressure and applied rf input power. The plasma electronegativity decreases with rf power and increases with chlorine concentration. At high pressure, the power absorption and distribution of charged particles become more localized below the quartz window. Although the experimental trends are well reproduced by the simulations, the calculated charged particle densities are systematically overestimated by a factor of 3-5. The reasons for this discrepancy are discussed in the paper.
Resumo:
We present results of wavepacket simulations for multiphoton ionization in argon. A single active electron model is applied to estimate the single-electron ionization rates and photoelectron energy distributions for lambda = 390 nm light with intensities up to I = 2 x 10(14) W cm(-2). The multiphoton ionization rates are compared with R-matrix Floquet calculations and found to be in very good agreement. The photoelectron energy distribution is used to study the nature of ionization at the higher intensities. Our results are consistent with recent calculations and experiments which show the imprint of the tunnelling process in the multiphoton regime. For few-cycle intense pulses, we find that the strong modulation of intensity and increased bandwidth leads to dynamic mixing of the 3d and 5s resonances.
Resumo:
We have measured the densities of 1s5 and 1s3 argon metastables as a function of the abundance of molecular oxygen in an inductively coupled plasma (ICP) in mixtures of Ar and O2. Laser absorption spectroscopy was used to determine the densities of the metastables. It was found that even small abundances of oxygen lead to large increases in metastable density, mostly due to the reduction in the electron number density, since electron-induced quenching determines the metastable density. At abundances higher than 7% to 15% for powers between 50 and 150W, quenching by oxygen molecules begins to dominate and the metastable density drops again.
Resumo:
We have measured the two-electron contribution of the ground state energy of helium-like argon ions using an electron beam ion trap (EBIT). A two-dimensional map was measured showing the intensity of x-rays from the trap passing through a krypton-filled absorption cell. The independent axes of this map were electron beam energy and x-ray energy. From this map, we deduced the two-electron contribution of the ground state of helium-like argon. This experimentally determined Value (312.4 +/- 9.5 eV) was found to be in good agreement with our calculated values (about 303.35 eV) and previous calculations of the same quantity. Based on these measurements, we have shown that a ten-day absorption spectroscopy run with a super-EBIT should be sufficient to provide a new benchmark value for the two-electron contribution to the ground state of helium-like krypton. Such a measurement would then constitute a test of quantum electrodynamics to second order.
Resumo:
This work explores the effects of argon and nitrogen, two electrochemically and chemically inert gases frequently used in sample preparation of room temperature ionic liquid (RTIL) solutions, on the eelectrochemical characterization of ferrocene (Fc) dissolved in the RTIL 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([C(2)mim][NTf2]). Remarkably, chronoamperometrically determined diffusion coefficients of Fc in [C(2)mim][NTf2] are found to increase from 4.8 (+/- 0.2) x 10(-11) m(2) s(-1) under vacuum conditions to 6.6 (+/- 0.5) x 10(-11) m(2) s(-1) in an atmosphere of 1 atm Ar. In contrast, exposing a vacuum-purified sample to an atmosphere of 1 atm N-2 resulted in no significant change in the measured diffusion coefficient of Fc. The effect of dissolved argon on diffusion transport is unexpected and has implications in electrochemistry and elsewhere. Fc was found to volatilize under vacuum conditions. We propose, however, that evacuation of the cell by vacuum prior to electrochemical measurements being carried out is the only way to ensure that no contamination of the sample occurs, and use of an in situ method of determining the diffusion coefficient and concentration of Fc dispells,any ambiguity associated with Fc depletion by vacuum.
Resumo:
This article identifies the author of a hitherto anonymous poem and supplies its ending, previously believed to be missing. It adds a sixth poem to the surviving work of Einion ap Gwalchmai.
Resumo:
Glucagon-like peptide-1(7-36)amide (tGLP-1) is an important insulin-releasing hormone of the enteroinsular axis which is secreted by endocrine L-cells of the small intestine following nutrient ingestion. The present study has evaluated tGLP-1 in the intestines of normal and diabetic animal models and estimated the proportion present in glycated form. Total immunoreactive tGLP-1 levels in the intestines of hyperglycaemic hydrocortisone-treated rats, streptozotocin-treated mice and ob/ob mice were similar to age-matched controls. Affinity chromatographic separation of glycated and non-glycated proteins in intestinal extracts followed by radioimmunoassay using a fully crossreacting anti-serum demonstrated the presence of glycated tGLP-1 within the intestinal extracts of all control animals (approximately 19%., of total tGLP-1 content). Chemically induced and spontaneous animal models of diabetes were found to possess significantly greater levels of glycated tGLP-1 than controls, corresponding to between 24-71% of the total content. These observations suggest that glycated tGLP-1 may be of physiological significance given that such N-terminal modification confers resistance to DPP IV inactivation and degradation, extending the very short half-life (
Resumo:
Glucagon-like peptide-1(7-36)amide (tGLP-1) has attracted considerable potential as a possible therapeutic agent for type 2 diabetes. However, tGLP-1 is rapidly inactivated in vivo by the exopeptidase dipeptidyl peptidase IV (DPP IV), thereby terminating its insulin releasing activity. The present study has examined the ability of a novel analogue, His(7)-glucitol tGLP-1 to resist plasma degradation and enhance the insulin-releasing and antihyperglycemic activity of the peptide in 20-25-week-old obese diabetic ob/ob mice. Degradation of native tGLP-1 by incubation at 37 degreesC with obese mouse plasma was clearly evident after 3 h (35% intact). After 6 h, more than 87% of tGLP-1 was converted to GLP-1(9-36)amide and two further N-terminal fragments, GLP-1(7-28) and GLP-1(9-28). In contrast, His7-glucitol tGLP-1 was completely resistant to N-terminal degradation. The formation of GLP-1(9-36)amide from native tGLP-1 was almost totally abolished by addition of diprotin A, a specific inhibitor of DPP IV. Effects of tGLP-1 and His7-glucitol tGLP-1 were examined in overnight fasted obese mice following i.p. injection of either peptide (30 nmol/kg) together with glucose (18 mmol/kg) or in association with feeding. Plasma glucose was significantly lower and insulin response greater following administration of His7-glucitol tGLP-1 as compared to glucose alone. Native tGLP-1 lacked antidiabetic effects under the conditions employed, and neither peptide influenced the glucose-lowering action of exogenous insulin (50 units/kg). Twice daily s.c. injection of ob/ob mice with His(7)-glucitol tGLP-1 (10 nmol/kg) for 7 days reduced fasting hyperglycemia and greatly augmented the plasma insulin response to the peptides given in association with feeding. These data demonstrate that His(7)-glucitol tGLP-1 displays resistance to plasma DPP IV degradation and exhibits antihyperglycemic activity and substantially enhanced insulin-releasing action in a commonly used animal model of type 2 diabetes. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Glucagon-like peptide-1 (7-36)amide (tGLP-1) is inactivated by dipeptidyl peptidase (DPP) IV by removal of the NH2-terminal dipeptide His(7)-Ala(8). We examined the degradation of NH2-terminally modified His(7)-glucitol tGLP-1 and its insulin-releasing and antihyperglycaemic activity in vivo, tGLP-1 was degraded by purified DPP IV after 4 h (43% intact) and after 12 hi 89% was converted to GLP-1(9-36)amide. In contrast > 99% of His(7)-glucitol tGLP-1 remained intact at 12 h. His(7)-glucitol tGLP-1 was similarly resistant to plasma degradation in vitro. His7-glucitol tGLP-1 showed greater resistance to degradation in vivo (92% intact) compared to tGLP-1 (27% intact) 10 min after i.p. administration to Wistar rats. Glucose homeostasis was examined following i.p. injection of both peptides (12 nmol/kg) together with glucose (18 mmol/kg). Plasma glucose concentrations were significantly reduced and insulin concentrations elevated following peptides administration compared with glucose alone. The area under the curve (AUC) for glucose for controls (AUC 691 +/- 35 mM/min) was significantly lower after administration of tGLP-1 and His7-glucitol tGLP-1 (36 and 49% less; AUC; 440 +/- 40 and 353 +/- 31 mM/min, respectively; P