979 resultados para Applied volumetric organic load
Resumo:
Weed control has always been an important issue in agriculture. With the advent of no-till systems, soil erosion was reduced but herbicide use was increased. Organic no-till systems try to adjust reduced erosion to the no use of herbicides. Nevertheless, this adjustment is limited by the cost of mechanical weed control. This cost may be reduced by improved cultural weed control with cover crops mulches. In this paper we report a study on the application of compost manure on an oats winter cover crop, preceding soybean, instead of on the soybean summer crop. Treatments comprised a control without compost manure, and compost manure doses of 4 and 8 Mg ha-1 applied either on oats in winter or soybean in summer, organized in a randomized block design, with five replications. In summer, plots were split into weed-controlled or not controlled subplots. The timing of application and the manure doses did not affect the oats biomass or the soybean performance. However, in summer, without water stress, the application of manure at 8 Mg ha-1 directly on soybean has reduced weed biomass in this crop.
Resumo:
Electrokinetics has emerged as a potential technique for in situ soil remediation and especially unique because of the ability to work in low permeability soil. In electrokinetic remediation, non-polar contaminants like most organic compounds are transported primarily by electroosmosis, thus the process is effective only if the contaminants are soluble in pore fluid. Therefore, enhancement is needed to improve mobility of these hydrophobic compounds, which tend to adsorb strongly to the soil. On the other hand, as a novel and rapidly growing science, the applications of ultrasound in environmental technology hold a promising future. Compared to conventional methods, ultrasonication can bring several benefits such as environmental friendliness (no toxic chemical are used or produced), low cost, and compact instrumentation. It also can be applied onsite. Ultrasonic energy applied into contaminated soils can increase desorption and mobilization of contaminants and porosity and permeability of soil through developing of cavitation. The research investigated the coupling effect of the combination of these two techniques, electrokinetics and ultrasonication, in persistent organic pollutant removal from contaminated low permeability clayey soil (with kaolin as a model medium). The preliminary study checked feasibility of ultrasonic treatment of kaolin highly contaminated by persistent organic pollutants (POPs). The laboratory experiments were conducted in various conditions (moisture, frequency, power, duration time, initial concentration) to examine the effects of these parameters on the treatment process. Experimental results showed that ultrasonication has a potential to remove POPs, although the removal efficiencies were not high with short duration time. The study also suggested intermittent ultrasonication over longer time as an effective means to increase the removal efficiencies. Then, experiments were conducted to compare the performances among electrokinetic process alone and electrokinetic processes combined with surfactant addition and mainly with ultrasonication, in designed cylinders (with filtercloth separating central part and electrolyte parts) and in open pans. Combined electrokinetic and ultrasonic treatment did prove positive coupling effect compared to each single process alone, though the level of enhancement is not very significant. The assistance of ultrasound in electrokinetic remediation can help reduce POPs from clayey soil by improving the mobility of hydrophobic organic compounds and degrading these contaminants through pyrolysis and oxidation. Ultrasonication also sustains higher current and increases electroosmotic flow. Initial contaminant concentration is an essential input parameter that can affect the removal effectiveness.
Resumo:
Demand for the use of energy systems, entailing high efficiency as well as availability to harness renewable energy sources, is a key issue in order to tackling the threat of global warming and saving natural resources. Organic Rankine cycle (ORC) technology has been identified as one of the most promising technologies in recovering low-grade heat sources and in harnessing renewable energy sources that cannot be efficiently utilized by means of more conventional power systems. The ORC is based on the working principle of Rankine process, but an organic working fluid is adopted in the cycle instead of steam. This thesis presents numerical and experimental results of the study on the design of small-scale ORCs. Two main applications were selected for the thesis: waste heat re- covery from small-scale diesel engines concentrating on the utilization of the exhaust gas heat and waste heat recovery in large industrial-scale engine power plants considering the utilization of both the high and low temperature heat sources. The main objective of this work was to identify suitable working fluid candidates and to study the process and turbine design methods that can be applied when power plants based on the use of non-conventional working fluids are considered. The computational work included the use of thermodynamic analysis methods and turbine design methods that were based on the use of highly accurate fluid properties. In addition, the design and loss mechanisms in supersonic ORC turbines were studied by means of computational fluid dynamics. The results indicated that the design of ORC is highly influenced by the selection of the working fluid and cycle operational conditions. The results for the turbine designs in- dicated that the working fluid selection should not be based only on the thermodynamic analysis, but requires also considerations on the turbine design. The turbines tend to be fast rotating, entailing small blade heights at the turbine rotor inlet and highly supersonic flow in the turbine flow passages, especially when power systems with low power outputs are designed. The results indicated that the ORC is a potential solution in utilizing waste heat streams both at high and low temperatures and both in micro and larger scale appli- cations.
Resumo:
Crystal properties, product quality and particle size are determined by the operating conditions in the crystallization process. Thus, in order to obtain desired end-products, the crystallization process should be effectively controlled based on reliable kinetic information, which can be provided by powerful analytical tools such as Raman spectrometry and thermal analysis. The present research work studied various crystallization processes such as reactive crystallization, precipitation with anti-solvent and evaporation crystallization. The goal of the work was to understand more comprehensively the fundamentals, phenomena and utilizations of crystallization, and establish proper methods to control particle size distribution, especially for three phase gas-liquid-solid crystallization systems. As a part of the solid-liquid equilibrium studies in this work, prediction of KCl solubility in a MgCl2-KCl-H2O system was studied theoretically. Additionally, a solubility prediction model by Pitzer thermodynamic model was investigated based on solubility measurements of potassium dihydrogen phosphate with the presence of non-electronic organic substances in aqueous solutions. The prediction model helps to extend literature data and offers an easy and economical way to choose solvent for anti-solvent precipitation. Using experimental and modern analytical methods, precipitation kinetics and mass transfer in reactive crystallization of magnesium carbonate hydrates with magnesium hydroxide slurry and CO2 gas were systematically investigated. The obtained results gave deeper insight into gas-liquid-solid interactions and the mechanisms of this heterogeneous crystallization process. The research approach developed can provide theoretical guidance and act as a useful reference to promote development of gas-liquid reactive crystallization. Gas-liquid mass transfer of absorption in the presence of solid particles in a stirred tank was investigated in order to gain understanding of how different-sized particles interact with gas bubbles. Based on obtained volumetric mass transfer coefficient values, it was found that the influence of the presence of small particles on gas-liquid mass transfer cannot be ignored since there are interactions between bubbles and particles. Raman spectrometry was successfully applied for liquid and solids analysis in semi-batch anti-solvent precipitation and evaporation crystallization. Real-time information such as supersaturation, formation of precipitates and identification of crystal polymorphs could be obtained by Raman spectrometry. The solubility prediction models, monitoring methods for precipitation and empirical model for absorption developed in this study together with the methodologies used gives valuable information for aspects of industrial crystallization. Furthermore, Raman analysis was seen to be a potential controlling method for various crystallization processes.
Resumo:
L’imagerie médicale a longtemps été limitée à cause des performances médiocres des fluorophores organiques. Récemment la recherche sur les nanocristaux semi-conducteurs a grandement contribué à l’élargissement de la gamme d’applications de la luminescence dans les domaines de l’imagerie et du diagnostic. Les points quantiques (QDs) sont des nanocristaux de taille similaire aux protéines (2-10 nm) dont la longueur d’onde d’émission dépend de leur taille et de leur composition. Le fait que leur surface peut être fonctionnalisée facilement avec des biomolécules rend leur application particulièrement attrayante dans le milieu biologique. Des QDs de structure « coeur-coquille » ont été synthétisés selon nos besoins en longueur d’onde d’émission. Dans un premier article nous avons modifié la surface des QDs avec des petites molécules bi-fonctionnelles portant des groupes amines, carboxyles ou zwitterions. L’effet de la charge a été analysé sur le mode d’entrée des QDs dans deux types cellulaires. À l’aide d’inhibiteurs pharmacologiques spécifiques à certains modes d’internalisation, nous avons déterminé le mode d’internalisation prédominant. L’endocytose par les radeaux lipidiques représente le mode d’entrée le plus employé pour ces QDs de tailles similaires. D’autres modes participent également, mais à des degrés moindres. Des disparités dans les modes d’entrée ont été observées selon le ligand de surface. Nous avons ensuite analysé l’effet de l’agglomération de différents QDs sur leur internalisation dans des cellules microgliales. La caractérisation des agglomérats dans le milieu de culture cellulaire a été faite par la technique de fractionnement par couplage flux-force (AF4) associé à un détecteur de diffusion de la lumière. En fonction du ligand de surface et de la présence ou non de protéines du sérum, chacun des types de QDs se sont agglomérés de façon différente. À l'aide d’inhibiteur des modes d’internalisation, nous avons corrélé les données de tailles d’agglomérats avec leur mode d’entrée cellulaire. Les cellules microgliales sont les cellules immunitaires du système nerveux central (CNS). Elles répondent aux blessures ou à la présence d’inflammagènes en relâchant des cytokines pro-inflammatoires. Une inflammation non contrôlée du CNS peut conduire à la neurodégénérescence neuronale et est souvent observée dans les cas de maladies chroniques. Nous nous sommes intéressés au développement d’un nanosenseur pour mesurer des biomarqueurs du début de l’inflammation. Les méthodes classiques pour étudier l’inflammation consistent à mesurer le niveau de protéines ou molécules relâchées par les cellules stressées (par exemple monoxyde d’azote, IL-1β). Bien que précises, ces méthodes ne mesurent qu’indirectement l’activité de la caspase-1, responsable de la libération du l’IL-1β. De plus ces méthode ne peuvent pas être utilisées avec des cellules vivantes. Nous avons construit un nanosenseur basé sur le FRET entre un QD et un fluorophore organique reliés entre eux par un peptide qui est spécifiquement clivé par la caspase-1. Pour induire l’inflammation, nous avons utilisé des molécules de lipopolysaccharides (LPS). La molécule de LPS est amphiphile. Dans l’eau le LPS forme des nanoparticules, avec des régions hydrophobes à l’intérieure. Nous avons incorporé des QDs dans ces régions ce qui nous a permis de suivre le cheminement du LPS dans les cellules microgliales. Les LPS-QDs sont internalisés spécifiquement par les récepteurs TLR-4 à la surface des microglies. Le nanosenseur s’est montré fonctionnel dans la détermination de l’activité de la caspase-1 dans cellules microgliales activées par le LPS. Éventuellement, le senseur permettrait d’observer en temps réel l’effet de thérapies ciblant l’inflammation, sur l’activité de la caspase-1.
Resumo:
N-alkyl-2,6-dimethyl-4(1H)-pyridinones, salts of 4-dimethylaminopyridine and 2-amino-5-nitropyridine are considered to be potential candidates for nonlinear optical (NLO) applications, in particular for the generation of blue-green laser radiation. Single crystals were grown following the slow evaporation technique at constant temperature. Single-shot laserinduced surface damage thresholds in the range 3–10 GW/cm2 were measured using a 18 ns Q-switched Nd:YAG laser. The surface morphologies of the damaged crystals were examined under an optical microscope and the nature of damage identified. The Vicker’s microhardness was determined at a load of 98.07 mN. The thermal transport properties, thermal diffusivity (α), thermal effusivity (e), thermal conductivity (K) and heat capacity (Cp), of the grown crystals were measured by an improved photopyroelectric technique at room temperature. All the results are presented and discussed.
Resumo:
Catalysis is a mature field with extensive practical applications in today's society.indeed,the catalysis of petroleum refining,fine chemical synthesis and emission control demands the production of catalysts in bulk quantities.Future improvement of these well established processes is likely to be incremental.On the other hand,the continuous demand for new products will require additional novel and innovative processes.The need for pollution abatement and prevention also imposes new demands on catalysis, and new processes are periodically advanced for the control of emission of gases as well as for remediation processes such as the cleaning of underground waters. The number of problems where catalysis can have a big impact is constantly growing.In general,science stimulated by the technology has enriched the field of catalysis in a way that has had broad and lasting value.The thesis"Transition metal and rare earth metal modified sol-gel titania: a versatile catalyst for organic transformations" accounts the preparation and characterization studies of both transition metals and rare earth metals modified sol-gel titania and its applications in industrially useful organic reactions.
Resumo:
Catalysis is a very important process from an industrial point of view since the production of most industrially important chemicals involves catalysis.Solid acid catalysts are appealing since the nature of acid sites is known and their chemical behavior in acid catalyzed reactions can be rationalized by means of existing theories and models. Mixed oxides crystallizing in spinel structure are of special interest because the spinel lattice imparts extra stability to the catalyst under various reaction conditions so that theses systems have sustained activities for longer periods. The thesis entitled" Catalysis By Ferrites And Cobaltites For The Alkylation And Oxidation Of Organic Compounds " presents the preparation ,characterization ,and activity studies of the prepared spinels were modified by incorporating other ions and by changing the stoichiometry.The prepared spinels exhibiting better catalytic activity towards the studied reactions with good product selectivity.Acid-base properties and cation distribution of the spinels were found to control the catalytic activity.
Resumo:
Catalysis is a technologically important field which determines the quality of life in future. Catalyst research in pharmaceutical industry,fine chemical synthesis and emission control demands supported catalysts in bulk quantities.In the present work it was observed that clay supported catalysts mentioned in various chapters could also be used for the synthesis of similar molecules. The K10Ti catalyst can be used for the synthesis similar substituted imidazole derivatives under solvent free conditions and synthetically important Mannich bases of substrates containing various substitutes.Al-pillared saponite can be used for acetalation of other polyhydroxy compounds like glycerol,mannitol etc.Cu-Pd KSF catalyst has found application in C-C bond forming reactions which can be applied to other reactions and similar methods can be adopted for the synthesis of other catalyst by changing the transition metals. Montmorillonite K10 catalysed synthesis of triarylpyridines can be extended to the synthesis tetrasubstuted pyroles.K10Ti can also be utilized for the synthesis of similar heterocycles.
Resumo:
Present thesis has discussed the design and synthesis of polymers suitable for nonlinear optics. Most of the molecules that were studied have shown good nonlinear optical activity. The second order nonlinear optical activity of the polymers was measured experimentally by Kurtz and Perry powder technique. The thesis comprises of eight chapters.The theory of NLO phenomenon and a review about the various nonlinear optical polymers has been discussed in chapter 1. The review has provided a survey of NLO active polymeric materials with a general introduction, which included the principles and the origin of nonlinear optics, and has given emphasis to polymeric materials for nonlinear optics, including guest-host systems, side chain polymers, main chain polymers, crosslinked polymers, chiral polymers etc.Chapter 2 has discussed the stability of the metal incorporated tetrapyrrole molecules, porphyrin, chlorin and bacteriochlorin.Chapter 3 has provided the NLO properties of certain organic molecules by computational tools. The chapter is divided into four parts. The first part has described the nonlinear optical properties of chromophore (D-n-A) and bichromophore (D-n-A-A-n-D) systems, which were separated by methylene spacer, by making use of DPT and semiempirical calculations.Chapter 4: A series of polyurethanes was prepared from cardanol, a renewable resource and a waste of the cashew industry by previously designed bifunctional and multifunctional polymers using quantum theoretical approach.Chapter 5: A series of chiral polyurethanes with main chain bis azo diol groups in the polymer backbone was designed and NLO activity was predicted by ZlNDO/ CV methods.In Chapter 7, polyurethanes were first designed by computational methods and the NLO properties were predicted by correction vector method. The designed bifunctional and multifunctional polyurethanes were synthesized by varying the chiral-achiral diol compositions
Resumo:
Soil microorganisms play a main part in organic matter decomposition and are consequently necessary to soil ecosystem processes maintaining primary productivity of plants. In light of current concerns about the impact of cultivation and climate change on biodiversity and ecosystem performance, it is vital to expand a complete understanding of the microbial community ecology in our soils. In the present study we measured the depth wise profile of microbial load in relation with important soil physicochemical characteristics (soil temperature, soil pH, moisture content, organic carbon and available NPK) of the soil samples collected from Mahatma Gandhi University Campus, Kottayam (midland region of Kerala). Soil cores (30 cm deep) were taken and the cores were separated into three 10-cm depths to examine depth wise distribution. In the present study, bacterial load ranged from 141×105 to 271×105 CFU/g (10cm depth), from 80×105 to 131×105 CFU/g (20cm depth) and from 260×104 to 47×105 CFU/g (30cm depth). Fungal load varies from 124×103 to 27×104 CFU/g, from 61×103 to110×103 CFU/g and from 16×103 to 49×103 CFU/g at 10, 20 and 30 cm respectively. Actinomycetes count ranged from 129×103 to 60×104 CFU/g (10cm), from 70×103 to 31×104 CFU/g (20cm) and from 14×103 to 66×103 CFU/g (30cm). The study revealed that there was a significant difference in the depthwise distribution of microbial load and soil physico-chemical properties. Bacterial, fungal and actinomycetes load showed a decreasing trend with increasing depth at all the sites. Except pH all other physicochemical properties showed decreasing trend with increasing depth. The vertical profile of total microbial load was well matched with the depthwise profiles of soil nutrients and organic carbon that is microbial load was highest at the soil surface where organics and nutrients were highest
Resumo:
Soil organic matter (SOM) vitally impacts all soil functions and plays a key role in the global carbon (C) cycle. More than 70% of the terrestric C stocks that participate in the active C cycle are stored in the soil. Therefore, quantitative knowledge of the rates of C incorporation into SOM fractions of different residence time is crucial to understand and predict the sequestration and stabilization of soil organic carbon (SOC). Consequently, there is a need of fractionation procedures that are capable of isolating functionally SOM fractions, i.e. fractions that are defined by their stability. The literature generally refers to three main mechanisms of SOM stabilization: protection of SOM from decomposition by (i) its structural composition, i.e. recalcitrance, (ii) spatial inaccessibility and/or (iii) interaction with soil minerals and metal ions. One of the difficulties in developing fractionation procedures for the isolation of functional SOM fractions is the marked heterogeneity of the soil environment with its various stabilization mechanisms – often several mechanisms operating simultaneously – in soils and soil horizons of different texture and mineralogy. The overall objective of the present thesis was to evaluate present fractionation techniques and to get a better understanding of the factors of SOM sequestration and stabilization. The first part of this study is attended to the structural composition of SOM. Using 13C cross-polarization magic-angle spinning (CPMAS) nuclear magnetic resonance (NMR) spectroscopy, (i) the effect of land use on SOM composition was investigated and (ii) examined whether SOM composition contributes to the different stability of SOM in density and aggregate fractions. The second part of the present work deals with the mineral-associated SOM fraction. The aim was (iii) to evaluate the suitability of chemical fractionation procedures used in the literature for the isolation of stable SOM pools (stepwise hydrolysis, treatments using oxidizing agents like Na2S2O8, H2O2, and NaOCl as well as demineralization of the residue obtained by the NaOCl treatment using HF (NaOCl+HF)) by pool sizes, 13C and 14C data. Further, (iv) the isolated SOM fractions were compared to the inert organic matter (IOM) pool obtained for the investigated soils using the Rothamsted Carbon Model and isotope data in order to see whether the tested chemical fractionation methods produce SOM fractions capable to represent this pool. Besides chemical fractionation, (v) the suitability of thermal oxidation at different temperatures for obtaining stable SOC pools was evaluated. Finally, (vi) the short-term aggregate dynamics and the factors that impact macroaggregate formation and C stabilization were investigated by means of an incubation study using treatments with and without application of 15N labeled maize straw of different degradability (leaves and coarse roots). All treatments were conducted with and without the addition of fungicide. Two study sites with different soil properties and land managements were chosen for these investigations. The first one, located at Rotthalmünster, is a Stagnic Luvisol (silty loam) under different land use regimes. The Ah horizons of a spruce forest and continuous grassland and the Ap and E horizons of two plots with arable crops (continuous maize and wheat cropping) were examined. The soil of the second study site, located at Halle, is a Haplic Phaeozem (loamy sand) where the Ap horizons of two plots with arable crops (continuous maize and rye cropping) were investigated. Both study sites had a C3-/C4-vegetational change on the maize plot for the purpose of tracing the incorporation of the younger, maize-derived C into different SOM fractions and the calculation of apparent C turnover times of these. The Halle site is located near a train station and industrial areas, which caused a contamination with high amounts of fossil C. The investigation of aggregate and density fractions by 13C CPMAS NMR spectroscopy revealed that density fractionation isolated SOM fractions of different composition. The consumption of a considerable part (10–20%) of the easily available O-alkyl-C and the selective preservation of the more recalcitrant alkyl-C when passing from litter to the different particulate organic matter (POM) fractions suggest that density fractionation was able to isolate SOM fractions with different degrees of decomposition. The spectra of the aggregate fractions resembled those of the mineral-associated SOM fraction obtained by density fractionation and no considerable differences were observed between aggregate size classes. Comparison of plant litter, density and aggregate size fractions from soil under different land use showed that the type of land use markedly influenced the composition of SOM. While SOM of the acid forest soil was characterized by a large content (> 50%) of POM, which contained high amounts of spruce-litter derived alkyl-C, the organic matter in the biologically more active grassland and arable soils was dominated by mineral-associated SOM (> 95%). This SOM fraction comprised greater proportions of aryl- and carbonyl-C and is considered to contain a higher amount of microbially-derived organic substances. Land use can alter both, structure and stability of SOM fractions. All applied chemical treatments induced considerable SOC losses (> 70–95% of mineral-associated SOM) in the investigated soils. The proportion of residual C after chemical fractionation was largest in the arable Ap and E horizons and increased with decreasing C content in the initial SOC after stepwise hydrolysis as well as after the oxidative treatments with H2O2 and Na2S2O8. This can be expected for a functional stable pool of SOM, because it is assumed that the more easily available part of SOC is consumed first if C inputs decrease. All chemical treatments led to a preferential loss of the younger, maize-derived SOC, but this was most pronounced after the treatments with Na2S2O8 and H2O2. After all chemical fractionations, the mean 14C ages of SOC were higher than in the mineral-associated SOM fraction for both study sites and increased in the order: NaOCl < NaOCl+HF ≤ stepwise hydrolysis << H2O2 ≈ Na2S2O8. The results suggest that all treatments were capable of isolating a more stable SOM fraction, but the treatments with H2O2 and Na2S2O8 were the most efficient ones. However, none of the chemical fractionation methods was able to fit the IOM pool calculated using the Rothamsted Carbon Model and isotope data. In the evaluation of thermal oxidation for obtaining stable C fractions, SOC losses increased with temperature from 24–48% (200°C) to 100% (500°C). In the Halle maize Ap horizon, losses of the young, maize-derived C were considerably higher than losses of the older C3-derived C, leading to an increase in the apparent C turnover time from 220 years in mineral-associated SOC to 1158 years after thermal oxidation at 300°C. Most likely, the preferential loss of maize-derived C in the Halle soil was caused by the presence of the high amounts of fossil C mentioned above, which make up a relatively large thermally stable C3-C pool in this soil. This agrees with lower overall SOC losses for the Halle Ap horizon compared to the Rotthalmünster Ap horizon. In the Rotthalmünster soil only slightly more maize-derived than C3-derived SOC was removed by thermal oxidation. Apparent C turnover times increased slightly from 58 years in mineral-associated SOC to 77 years after thermal oxidation at 300°C in the Rotthalmünster Ap and from 151 to 247 years in the Rotthalmünster E horizon. This led to the conclusion that thermal oxidation of SOM was not capable of isolating SOM fractions of considerably higher stability. The incubation experiment showed that macroaggregates develop rapidly after the addition of easily available plant residues. Within the first four weeks of incubation, the maximum aggregation was reached in all treatments without addition of fungicide. The formation of water-stable macroaggregates was related to the size of the microbial biomass pool and its activity. Furthermore, fungi were found to be crucial for the development of soil macroaggregates as the formation of water-stable macroaggregates was significantly delayed in the fungicide treated soils. The C concentration in the obtained aggregate fractions decreased with decreasing aggregate size class, which is in line with the aggregate hierarchy postulated by several authors for soils with SOM as the major binding agent. Macroaggregation involved incorporation of large amounts maize-derived organic matter, but macroaggregates did not play the most important role in the stabilization of maize-derived SOM, because of their relatively low amount (less than 10% of the soil mass). Furthermore, the maize-derived organic matter was quickly incorporated into all aggregate size classes. The microaggregate fraction stored the largest quantities of maize-derived C and N – up to 70% of the residual maize-C and -N were stored in this fraction.
Resumo:
Research on soil fertility management in sub-Saharan Africa was criticized lately for largely ignoring farmers’ management strategies and the underlying principles. To fill this gap of knowledge, detailed interviews were conducted with 108 farm households about their rationale in managing the soil fertility of 307 individual fields in the agro-pastoral village territory of Chikal in western Niger. To amplify the farmers’ information on manuring and corralling practices, repeated measurements of applied amounts of manure were carried out within six 1-km^2 monitoring areas from February to October 1998. The interviews revealed that only 2% of the fields were completely fallowed for a period of 1–15 years, but 40% of the fields were at least partially fallowed. Mulching of crop residues was mainly practiced to fight wind erosion but was restricted to 36% of the surveyed fields given the alternative use of straw as livestock feed. Manure application and livestock corralling, as most effective tools to enhance soil fertility, were targeted to less than 30% of the surveyed fields. The application of complete fallow and manuring and corralling practices were strongly related to the households’ endowment with resources, especially with land and livestock. Within particular fields, measures were mainly applied to spots of poor soil fertility, while the restoration of the productivity of hard pans was of secondary importance. Given the limited spatial coverage of indigenous soil fertility measures and their strong dependence on farmers’ wealth, supplementary strategies to restrict the decline of soil fertility in the drought prone areas of Niger with their heavily weathered soils are needed.
Resumo:
The presented thesis considered three different system approach topics to ensure yield and plant health in organically grown potatoes and tomatoes. The first topic describes interactions between late blight (Phytophthora infestans) incidence and soil nitrogen supply on yield in organic potato farming focussing in detail on the yield loss relationship of late blight based on results of several field trials. The interactive effects of soil N-supply, climatic conditions and late blight on the yield were studied in the presence and absence of copper fungicides from 2002-2004 for the potato cultivar Nicola. Under conditions of central Germany the use of copper significantly reduced late blight in almost all cases (15-30 %). However, the reductions in disease through copper application did not result in statistically significant yield increases (+0 – +10 %). Subsequently, only 30 % of the variation in yield could be attributed to disease reductions. A multiple regression model (R²Max), however, including disease reduction, growth duration and temperature sum from planting until 60 % disease severity was reached and soil mineral N contents 10 days after emergence could explain 75 % of the observed variations in yield. The second topic describes the effect of some selected organic fertilisers and biostimulant products on nitrogen-mineralization and efficiency, yield and diseases in organic potato and tomato trials. The organic fertilisers Biofeed Basis (BFB, plant derived, AgroBioProducts, Wageningen, Netherlands) and BioIlsa 12,5 Export (physically hydrolysed leather shavings, hair and skin of animals; ILSA, Arizignano, Italy) and two biostimulant products BioFeed Quality (BFQ, multi-compound seaweed extract, AgroBioProducts) and AUSMA (aqueous pine and spruce needle extract, A/S BIOLAT, Latvia), were tested. Both fertilisers supplied considerable amounts of nitrogen during the main uptake phases of the crops and reached yields as high or higher as compared to the control with horn meal fertilisation. The N-efficiency of the tested fertilisers in potatoes ranged from 90 to 159 kg yield*kg-1 N – input. Most effective with tomatoes were the combined treatments of fertiliser BFB and the biostimulants AUSMA and BFQ. Both biostimulants significantly increased the share of healthy fruit and/or the number of fruits. BFQ significantly increased potato yields (+6 %) in one out of two years and reduced R. solani-infestation in the potatoes. This suggests that the biostimulants had effects on plant metabolism and resistance properties. However, no effects of biostimulants on potato late blight could be observed in the fields. The third topic focused on the effect of suppressive composts and seed tuber health on the saprophytic pathogen Rhizoctonia solani in organic potato systems. In the present study 5t ha-1 DM of a yard and bio-waste (60/40) compost produced in a 5 month composting process and a 15 month old 100 % yard waste compost were used to assess the effects on potato infection with R. solani when applying composts within the limits allowed. Across the differences in initial seed tuber infestation and 12 cultivars 5t DM ha-1 of high quality composts, applied in the seed tuber area, reduced the infestation of harvested potatoes with black scurf, tuber malformations and dry core tubers by 20 to 84 %, 20 to 49 % and 38 to 54 %, respectively, while marketable yields were increased by 5 to 25 % due to lower rates of wastes after sorting (marketable yield is gross yield minus malformed tubers, tubers with dry core, tubers with black scurf > 15% infested skin). The rate of initial black scurf infection of the seed tubers also affected tuber number, health and quality significantly. Compared to healthy seed tubers initial black scurf sclerotia infestation of 2-5 and >10 % of tuber surface led in untreated plots to a decrease in marketable yields by 14-19 and 44-66 %, a increase of black scurf severity by 8-40 and 34-86 % and also increased the amount of malformed and dry core tubers by 32-57 and 109-214 %.