624 resultados para Antral follicles
Resumo:
Buffalo ovaries were collected from a slaughterhouse (Frigol, Brazil) and transported to the laboratory in saline solution at 36 degrees C. The ovaries were dissected to realize the evaluations (weight, length, width and height of the ovary; corpus luteum and dominant follicle diameters). The Cumulus-oocyte complexes (COCs) were recovered by aspiration of 2-8 mm follicles. Selected COCs were matured in TCM 199 supplemented with 10% fetal bovine serum, sodium pyruvate, LH, FSH, estradiol and gentamicin. In vitro maturation was carried out at 38.5 degrees C for 22-24 h and 34-36 h. For the evaluation of the nuclear maturation the oocytes were placed in TCM 199 medium added with type v hialuronidase where the granulosa cells were extracted. The denuded oocytes were transferred to 10 mu l of Hoescht 33342 and the chromosomic configuration was evaluated. The oocytes were classified according to meiosis stage in: Germinal Vesicle, Germinal Vesicle Breakdown, Metaphase I, Metaphase II and Degenerated. The means of weight, length, width and height of the ovary were 3.83 g, 2.27 cm, 1.08 cm and 1.56 cm, respectively. The means of corpus luteum and dominant follicle diameters were 1.40 cm and 7.77 mm. The proportion of oocytes that reached metaphase II stage was: 36.68%.
Resumo:
Mammalian oocytes can undergo spontaneous meiotic maturation when they are liberated from their follicles and cultured in vitro; however, the zona pellucida (ZP) becomes resistant to chymotrypsin digestion, or hardens, when spontaneous maturation occurs in serum-free medium. Schroeder et al. [Biol. Reprod. 43 (1990) 891] described that fetuin, a component of fetal calf serum (FCS), inhibits ZP hardening during oocyte maturation. The aim of this experiment was to study the effect of the presence of cumulus cells and addition of hormones to maturation media on bovine zona hardening and embryo development in medium with and without fetuin. In Experiment 1, different concentrations of fetuin were added to the maturation medium. The time necessary for digestion of 50% of the ZP (d50) was not different when oocytes were matured in presence of 10% FCS, 1 mg/ml polyvinyl alcohol (PVA), or 4, 1 and 0.25 mg/ml of fetuin; cleavage rates were also similar. However, significantly more blastocysts (P < 0.05) were formed when FCS was used compared to PVA and 0.25 mg/ml of fetuin. In Experiment 11, we examined the influence of the presence of cumulus cells and hormones during the maturation of oocytes in media with PVA, BSA, FCS and fetuin. The d50 was significantly higher (P < 0.05) when oocytes were matured in presence of cumulus cells. The cleavage rate of cumulus-intact oocytes was similar for all groups. However, when oocytes were partially stripped before maturation, the cleavage rate was significantly higher (P < 0.05) when FCS or fetuin was used. In both stripped and non-stripped groups, significantly more blastocysts (P < 0.05) were formed when oocytes were matured with FCS compared to BSA and PVA. These results indicate that zona hardening, as described for mouse and human oocytes, does not have a large effect on bovine cumulus-intact oocytes. Apparently fetuin can be used as a substitute for FCS during bovine oocyte maturation, since it leads to similar developmental rates as FCS in intact and partially stripped oocytes. (C) 2002 Published by Elsevier B.V. B.V.
Resumo:
Equine pituitary extract (EPE) has been reported to induce heightened follicular development in mares, but the response is inconsistent and lower than results obtained in ruminants undergoing standard superovulatory protocols. Three separate experiments were conducted to improve the ovarian response to EPE by evaluating: (1) effect of increasing the frequency or dose of EPE treatment; (2) use of a potent gonadotropin-releasing hormone agonist (GnRH-a) prior to EPE stimulation (3) administration of EPE twice daily in successively decreasing doses. In the first experiment. 50 mares were randomly assigned to one of four treatment groups. Mares received (1) 25 mg EPE once daily; (2) 50 mg EPE once daily (3) 12.5 mg EPE twice daily; or (4) 25 mg EPE twice daily. All mares began EPE treatment 5 days after detection of ovulation and received a single dose of cloprostenol sodium 7 days postovulation. EPE was discontinued once half of a cohort of follicles reached a diameter of greater than or equal to35 mm and hCG was administered. Mares receiving 50 mg of EPE once daily developed a greater number (P = 0.008) of preovulatory follicles than the remaining groups of EPE-treated mares, and more (P = 0.06) ovulations were detected for mares receiving 25 mg EPE twice daily compared to those receiving either 25 mg EPE once daily and 12.5 mg EPE twice daily. Embryo recovery per mare was greater (P = 0.05) in the mares that received 12.5 mg EPE twice daily than those that received 25 mg EPE once daily. In Experiment 2, 20 randomly selected mares received either 25 mg EPE twice daily beginning 5 days after a spontaneous ovulation. or two doses of a GnRH-a agonist upon detection of a follicle greater than or equal to35 mm and 25 mg EPE twice daily beginning 5 days after ovulation. Twenty-four hours after administration of hCG, oocytes were recovered by transvaginal aspiration from all follicles greater than or equal to35 mm. No differences were observed between groups in the numbers of preovulatory follicles generated (P = 0.54) and oocytes recovered (P = 0.40) per mare. In Experiment 3, 18 mares were randomly assigned to one of two treatment groups. Then, 6-11 days after ovulation, mares were administered a dose of PGF(2gamma) and concomitantly began twice-daily treatments with EPE given in successively declining doses, or a dose of PGF(2alpha), but no EPE treatment. Mares administered EPE developed a higher (P = 0.0004) number of follicles :35 mm, experienced more (P = 0.02) ovulations, and yielded a greater (P = 0.0006) number of embryos than untreated mares. In summary, doubling the dose of EPE generated a greater ovarian response, while increasing the frequency of treatment, but not necessarily the dose. improved embryo collection. Additionally, pretreatment with a GnRH-a prior to ovarian stimulation did not enhance the response to EPE or oocyte recovery rates. (C) 2002 Elsevier B.V. All rights reserved.
Resumo:
Equine pituitary extract (EPE), has been reported to induce multiple ovulation in mares, however ovulation rates are poor in comparison to those obtained in other species. Attempts to improve the effectiveness of EPE for induction of superovulation in cyclic mares has focused on daily frequency of EPE treatment. Two experiments were performed to compare the ovarian response of cyclic mares given EPE once or twice-daily. Mares were assigned to one of two treatment groups 6 to 8 days after ovulation: prostaglandin was given once and EPE (25 mg) was given once daily (Group 1) or twice daily (Group 2). In Experiment 1, more (P < 0.05) follicles
Resumo:
The use of equine FSH (eFSH) for inducing follicular development and ovulation in transitional mares was evaluated. Twenty-seven mares, from 3 to 15 years of age, were examined during the months of August and September 2004, in Brazil. Ultrasound evaluations were performed during 2 weeks before the start of the experiment to confirm transitional characteristics (no follicles larger than 25 mm and no corpus luteum [CL] present). After this period, as the mares obtained a follicle of at least 25 mm, they were assigned to one of two groups: (1) control group, untreated; (2) treated with 12.5 mg eFSH, 2 times per day, until at least half of all follicles larger than 30 mm had reached 35 mm. Follicular activity of all mares was monitored. When most of the follicles from treated mares and a single follicle from control mares acquired a preovulatory size ( : 35 mm), 2,500 IU human chorionic gonadotropin (hCG) was administered IV to induce ovulation. After hCG administration, the mares were inseminated with fresh semen every other day until ovulation. Ultrasound examinations continued until detection of the last ovulation, and embryo recovery was performed 7 to 8 days after ovulation. The mares of the treated group reached the first preovulatoiy follicle (4.1 +/- 1.0 vs 14.9 +/- 10.8 days) and ovulated before untreated mares (6.6 +/- 1.2 vs 18.0 +/- 11.1 days; P <.05). All mares were treated with prostaglandin F-2 alpha (PGF(2 alpha)), on the day of embryo flushing. Three superovulated mares did not cycle immediately after PGF(2 alpha), treatment, and consequently had a longer interovulatory interval (22.4 vs 10.9 days, P < 0.05). The mean period of treatment was 4.79 1.07 days and 85.71% of mares had multiple ovulations. The number of ovulations (5.6 vs 1.0) and embryos (2.0 vs 0.7) per mare were higher (P < 0.05) for treated mares than control mares. In conclusion, treatment with eFSH was effective in hastening the onset of the breeding season, inducing multiple ovulations, and increasing embryo production in transitional mares. This is the first report showing the use of FSH treatment to recover embryos from the first cycle of the year.
Resumo:
O objetivo do trabalho foi avaliar a taxa de maturação nuclear in vitro de oócitos provenientes de gatas doméstica púbere e pré-púbere. Foram utilizadas 15 fêmeas felinas, 10 púberes e 5 pré-púberes; sendo os oócitos obtidos por aspiração quantificados e classificados. Os oócitos classificados como excelentes e regulares foram reunidos em grupos de 10, em meio de cultura, recobertos em óleo mineral em Placas de Petri siliconizadas e descartáveis. Após permanência em estufa, a 38°C e 5% de CO2 por 48 horas, os oócitos foram submetidos a duas lavagens com solução de hialuronidase a 0,4%, fixados em metanol/acido acético e corados com orceína acética. A avaliação da configuração cromossômica de oócitos maturados in vitro resultou em 44,68% das células em metáfase II no grupo das fêmeas púberes e 25,32% no grupo das doadoras pré-púberes, indicando que a puberdade influencia a capacidade dos oócitos se desenvolverem in vitro.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The objective was to determine the relationship among the diameter of ovarian follicles, ovulation rate, and gene expression of the LH receptor (LHR) in Nelore cattle. In Experiment 1, ovulation was synchronized in 53 Nelore cows. Three days after ovulation, ovaries were assessed with ultrasonography, all cows were given 6.25 mg LH im, and they were allocated into three groups, according to diameter of their largest ovarian follicle: G1 (7.0-8.0 mm); G2 (8.1-9.0 mm); and G3 (9.1-10.0 mm). For these three groups, ovulation rates were 9, 36, and 90%, respectively, (P < 0.03; each rate differed significantly from the other two). In Experiment 2, granulosa and theca cells were subjected to total RNA extraction, and gene expression of the LHR was determined by RT-PCR. Follicles were allocated in three groups based on their diameter (similar to the Experiment 1), which were denoted Groups A, B, and C. Expression of the LHR gene in granulosa cells was lower in Group A than Group C (P < 0.05). However, there were no significant differences among groups in expression of the LHR gene in theca cells. We concluded that ovulatory capacity in Nelore cattle was related to increased follicular diameter and expression of the LHR gene in granulosa cells. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
In order to modulate uterine inflammatory response and evaluate the effect of corticosteroid therapy on fertility, 90 cycles of 45 mares were used for artificial insemination with frozen semen, using three different protocols: G1 - inseminated with frozen semen (800 x 10(6) viable spermatozoa pre-freezing) + 20 mL of seminal plasma; G2 - inseminated with frozen semen (800 x 10(6) viable spermatozoa pre-freezing) + corticosteroid therapy; G3 - inseminated with frozen semen (800 x 10(6) viable spermatozoa pre-freezing) + 20 mL of seminal plasma + corticosteroid therapy. Corticosteroid therapy consisted on one administration of prednisolone acetate (0.1 mg/Kg - Predef (R)) when mares presented 35mm follicles and uterine edema, concomitantly with the unique dose of hCG (human chorionic gonadotropin), then repeated each 12 hours until ovulation. on first fertility trial, with normal mares, there was no difference between control and treated groups (p>0.05), using seminal plasma associated with corticosteroid therapy (40 vs. 38%, respectively) or corticosteroid therapy alone (40 vs. 45% respectively). The second fertility trial, performed with mares with previous history of post-insemination endometritis, demonstrated a significant increase of pregnancy rate when mares were submitted to corticosteroid therapy (0.0 vs. 64.5%, respectively; p<0.05). Corticosteroid therapy was shown to be safe, with no physical or reproductive alterations on treated mares, demonstrating to be an adequate option to those animals with history of post-breeding or post-insemination endometritis. Further clinical research is necessary to confirm these results and contribute to the establishment of preventive therapy for cases of post-insemination endometritis.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The effects of a low dose of equine purified FSH (eFSH) on incidence of multiple ovulations and embryo recovery rate in mares were studied. During the physiological breeding season in Brazil (19 degrees 45'45'S), 14 Mangalarga Marchador donor mares were used in a crossover study and another 25 mares of the same breed, between 3 years and 12 years of age were used as recipients for the embryo transfers. Donors were monitored during two consecutive oestrus cycles, an untreated control cycle followed by a treated cycle, when eFSH was administered. In both cycles, after an embryo collection attempt on day 8 post-ovulation all mares received 7.5 mg dinoprost and had their two largest follicles tracked daily by ultrasonography until the period of ovulation. Mares were inseminated every 48 h with extended fresh semen from a single stallion after the identification of a 35-mm follicle until the period of ovulation. Ovulations were induced by intravenous administration of 2.500 IU of human chorionic gonadotropin, upon detection of a 35- to 40-mm follicle. In the treated cycle, 5 mg eFSH was given intramuscularly once a day, from day 8 post previous ovulation until at least one follicle reached 35 mm in diameter. Embryo flushes were performed on day 8 of dioestrus (day 0 = ovulation). Treatment with eFSH resulted in higher (p < 0.05) ovulation rate and incidence of multiple ovulations compared to the control (1.6 vs 1.0 and 50% vs 0%, respectively - one mare had triple ovulation). However, embryo recovery rates in the control and treated cycles were similar (0.8 and 1.0, respectively; p > 0.05). Pregnancy rates in the recipient mares following embryo transfer were similar for the control and eFSH cycles (11/11 and 10/14, respectively). Additional studies are necessary in order to develop a low-dose protocol for the use of eFSH that brings a more consistent contribution to the efficiency of commercial equine embryo transfer programs.
Resumo:
Atualmente os animais silvestres têm despertado o interesse particular na criação domestica. Na medicina de animais selvagens, os exames ultra-sonográficos podem ser considerados como ferramenta para diagnosticar e prevenir doenças. Deste modo, realizou-se um estudo em 20 jibóias (Boa constrictor), a fim de caracterizar a morfologia e aparência ultra-sonográfica das estruturas presentes da cavidade celomática desses animais. Ultra-sonograficamente, o fígado apresentou-se variando de hipoecóica a levemente hiperecogênica, com margens ecogênicas e ecotextura homogênea em toda sua extensão. Os rins mostraram formato elipsóide, com cápsula fina, regular e hiperecóica. Os folículos ovarianos apresentaram formato ovóide, margens finas, regulares e discretamente hiperecóicas. As estruturas do sistema reprodutor do macho não foram evidenciadas com precisão, devido a sua ecogenicidade similar em relação às estruturas adjacentes e pela presença do corpo gorduroso localizado nessa região. A ultra-sonografia da cavidade celomática em jibóias demonstrou ser uma técnica rápida e de fácil acesso, permitindo identificar a morfologia, sintopia e aparência ultra-sonográfica de estruturas como o fígado, rins e de folículos vitelogênicos nas fêmeas.
Resumo:
The ovarian remnant syndrome (ORS) is defined as the persistence of ovarian activity in surgically spayed females, in which part or the entire ovary remains after the surgical procedure. ORS is characterized as a neo-vascular formation that promotes the organ's functions again, and may occur in cats and dogs. This condition causes the return of all undesirable signs of estrus, like male attraction, vaginal secretion (proestral bleeding), anxiety, pseudocyesis, among other symptoms. The recommended treatment is the surgical removal of the remaining ovary tissue. However, this procedure should be performed at the estrogenic stage of the cycle, when the remaining ovary tissue is enlarged due to the presence of follicles, which facilitates its location. Apparently there are no papers on the consequences of an undesirable breeding. Thus, the objective of this article was to report a case of peritonitis in a bitch with ORS after natural breeding, referred to the Hospital Veterinario da Faculdade de Medicina Veterinaria e Zootecnia da UNESP, campus Botucatu, São Paulo, Brazil.
Resumo:
The follicular development was evaluated in ovine females during natural and prostaglandin-F(2 alpha) (PG) induced estrous cycle. Ewes were randomly divided in two treatments (n=7/treatment): T1 with natural cycle and T2 synchronized with two injections of PG. From one day before PG injection until next ovulation, daily transrectal ultrasonography was done. All follicles >= 2 mm were assessed. During the interovulatory intervals, follicular growth and regression occurred in a wave like pattern (2-3 waves). The maximum diameter of the largest follicle of the first wave was greater in T1 (5.83 +/- 0.31 mm) compared with T2 (5.0 +/- 0.1 mm; P<0.01), but there was no significant difference among the emergency day of largest follicle, during the growth phase of the follicular waves. The duration of the plateau phase in wave 2 differed between the two treatments (P<0.05) showing 0.83 +/- 0.31 and 1.83 +/- 0.17 d, for natural and synchronized treatment, respectively. Growth rate did not differ between treatments. Presence of new luteal tissue was detected on day 3 after ovulation. In conclusion, the follicular development was similar in female ovine during natural and PG induced estrous cycle.