931 resultados para Antibodies, Monoclonal, Humanized


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hepatoma-derived growth factor (HDGF) is overexpressed in lung cancer and the overexpression correlates with aggressive biological behaviors and poor clinical outcomes. We developed anti-HDGF monoclonal antibodies and tested their antitumor activity in lung cancer xenograft models. We also determined biological effects in tumors treated with the antibody alone or in combination with bevacizumab/avastin (an anti-vascular endothelial growth factor antibody) and/or gemcitabine (a chemotherapeutic agent). We found the anti-HDGF was effective to inhibit tumor growth in non-small cell lung cancer xenograft models. In the A549 model, compared with control IgG, tumor growth was substantially inhibited in animals treated with anti-HDGF antibodies, particularly HDGF-C1 (P = 0.002) and HDGF-H3 (P = 0.005). When HDGF-H3 was combined with either bevacizumab or gemcitabine, we observed enhanced tumor growth inhibition, particularly when the three agents were used together. HDGF-H3-treated tumors exhibited significant reduction of microvessel density with a pattern distinctive from the microvessel reduction pattern observed in bevacizumab-treated tumors. HDGF-H3-treated but not bevacizumab-treated tumors also showed a significant increase of apoptosis. Interestingly, many of the apoptotic cells in HDGF-H3-treated tumors are stroma cells, suggesting that the mechanism of the antitumor activity is, at least in part, through disrupting formation of tumor-stroma structures. Our results show that HDGF is a novel therapeutic target for lung cancer and can be effectively targeted by an antibody-based approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Anti-GM1 antibodies are present in some patients with autoimmune neurological disorders. These antibodies are most frequently associated with acute immune neuropathy called Guillain-Barré syndrome (GBS). Some clinical studies associate the presence of these antibodies with poor recovery in GBS. The patients with incomplete recovery have failure of nerve repair, particularly axon regeneration. Our previous work indicates that monoclonal antibodies can inhibit axon regeneration by engaging cell surface gangliosides (Lehmann et al., 2007). We asked whether passive transfer of human anti-GM1 antibodies from patients with GBS modulate axon regeneration in an animal model. Human anti-GM1 antibodies were compared with other GM1 ligands, cholera toxin B subunit and a monoclonal anti-GM1 antibody. Our results show that patient derived anti-GM1 antibodies and cholera toxin beta subunit impair axon regeneration/repair after PNS injury in mice. Comparative studies indicated that the antibody/ligand-mediated inhibition of axon regeneration is dependent on antibody/ligand characteristics such as affinity-avidity and fine specificity. These data indicate that circulating immune effectors such as human autoantibodies, which are exogenous to the nervous system, can modulate axon regeneration/nerve repair in autoimmune neurological disorders such as GBS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Antibodies which bind bioactive ligands can serve as a template for the generation of a second antibody which may react with the physiological receptor. This phenomenon of molecular mimicry by antibodies has been described in a variety of systems. In order to understand the chemical and molecular mechanisms involved in these interactions, monoclonal antibodies directed against two pharmacologically active alkaloids, morphine and nicotine, were carefully studied using experimental and theoretical molecular modeling techniques. The molecular characterization of these antibodies involved binding studies with ligand analogs and determination of the variable region amino acid sequence. A three-dimensional model of the anti-morphine binding site was constructed using computational and graphics display techniques. The antibody response in BALB/c mice to morphine appears relatively restricted, in that all of the antibodies examined in this study contained a $\lambda$ light chain, which is normally found in only 5% of mouse immunoglobulins. This study represents the first use of theoretical and experimental modeling techniques to describe the antigen binding site of a mouse Fv region containing a $\lambda$ light chain. The binding site model indicates that a charged glutamic acid residue and aromatic side chains are key features in ionic and hydrophobic interactions with the ligand morphine. A glutamic acid residue is found in the identical position in the anti-nicotine antibody and may play a role in binding nicotine. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

IL-1 and TNF are important proinflammatory cytokines implicated in both antimicrobial host defense and pathogenesis of diseases with an immune-mediated and/or inflammatory component. Respective studies in the dog have been hampered by the unavailability of reagents allowing the specific measurement of canine cytokine proteins and the effect of canine cytokine neutralization by Ab. Starting with recombinant canine (rcan) IL-1beta and rcanTNF, four polyclonal antisera and 22 mAb specific for rcanIL-1beta and rcanTNF were generated. Their usefulness in neutralization assays was determined. Using cytokine-containing supernatants of canine cells in bioassays, polyclonal antisera neutralized either canine IL-1beta or TNF. TNF was also neutralized by three antibodies developed in this study and one commercial mAb. The usefulness of monoclonal and polyclonal Ab in canine cytokine-specific Ab capture ELISA's was assessed. This resulted in the identification of a commercial mAb combination and one pair developed in this study allowing low levels of TNF to be detected by antibody capture ELISA. The detection limit was 141 pg/ml rcanTNF for both combinations. Using rcanIL-1beta as an antigen allowed the detection of lower concentrations of rcanIL-1beta (20 pg/ml, on the average) by a pair of polyclonal antisera than when monoclonals were used. By using such IL-1beta-specific and TNF-specific ELISA's, the respective cytokines were detected in supernatants of canine PBMC stimulated with LPS or heat-killed Listeria monocytogenes and interferon-gamma combined. Thus, monoclonal and polyclonal reagents were identified allowing the quantitation of canine IL-1beta and TNF production in vitro, and the neutralization of these cytokines.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tick-borne encephalitis (TBE) is one of the most dangerous human neurological infections occurring in Europe and Northern parts of Asia with thousands of cases and millions vaccinated against it. The risk of TBE might be assessed through analyses of the samples taken from wildlife or from animals which are in close contact with humans. Dogs have been shown to be a good sentinel species for these studies. Serological assays for diagnosis of TBE in dogs are mainly based on purified and inactivated TBEV antigens. Here we describe novel dog anti-TBEV IgG monoclonal antibody (MAb)-capture assay which is based on TBEV prME subviral particles expressed in mammalian cells from Semliki Forest virus (SFV) replicon as well as IgG immunofluorescence assay (IFA) which is based on Vero E6 cells transfected with the same SFV replicon. We further demonstrate their use in a small-scale TBEV seroprevalence study of dogs representing different regions of Finland. Altogether, 148 dog serum samples were tested by novel assays and results were compared to those obtained with a commercial IgG enzyme immunoassay (EIA), hemagglutination inhibition test and IgG IFA with TBEV infected cells. Compared to reference tests, the sensitivities of the developed assays were 90-100% and the specificities of the two assays were 100%. Analysis of the dog serum samples showed a seroprevalence of 40% on Åland Islands and 6% on Southwestern archipelago of Finland. In conclusion, a specific and sensitive EIA and IFA for the detection of IgG antibodies in canine sera were developed. Based on these assays the seroprevalence of IgG antibodies in dogs from different regions of Finland was assessed and was shown to parallel the known human disease burden as the Southwestern archipelago and Åland Islands in particular had considerable dog TBEV antibody prevalence and represent areas with high risk of TBE for humans.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Angiogenin (Ang), an inducer of neovascularization, is secreted by several types of human tumor cells and appears critical for their growth. The murine anti-Ang monoclonal antibody (mAb) 26–2F neutralizes the activities of Ang and dramatically prevents the establishment and metastatic dissemination of human tumor cell xenografts in athymic mice. However, for use clinically, the well-documented problem of the human anti-globulin antibody response known to occur with murine antibodies requires resolution. As a result, chimeric as well as totally humanized antibodies are currently being evaluated as therapeutic agents for the treatment of several pathological conditions, including malignancy. Therefore, we have constructed a chimeric mouse/human antibody based on the structure of mAb 26–2F. Complementary DNAs from the light and heavy chain variable regions of mAb 26–2F were cloned, sequenced, and genetically engineered by PCR for subcloning into expression vectors that contain human constant region sequences. Transfection of these vectors into nonproducing mouse myeloma cells resulted in the secretion of fully assembled tetrameric molecules. The chimeric antibody (cAb 26–2F) binds to Ang and inhibits its ribonucleolytic and angiogenic activities as potently as mAb 26–2F. Furthermore, the capacities of cAb 26–2F and its murine counterpart to suppress the formation of human breast cancer tumors in athymic mice are indistinguishable. Thus cAb 26–2F, with its retained neutralization capability and likely decreased immunogenicity, may be of use clinically for the treatment of human cancer and related disorders where pathological angiogenesis is a component.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two mouse monoclonal anti-anti-idiotopic antibodies (anti-anti-Id, Ab3), AF14 and AF52, were prepared by immunizing BALB/c mice with rabbit polyclonal anti-idiotypic antibodies (anti-Id, Ab2) raised against antibody D1.3 (Ab1) specific for the antigen hen egg lysozyme. AF14 and AF52 react with an “internal image” monoclonal mouse anti-Id antibody E5.2 (Ab2), previously raised against D1.3, with affinity constants (1.0 × 109 M−1 and 2.4 × 107 M−1, respectively) usually observed in secondary responses against protein antigens. They also react with the antigen but with lower affinity (1.8 × 106 M−1 and 3.8 × 106 M−1). This pattern of affinities for the anti-Id and for the antigen also was displayed by the sera of the immunized mice. The amino acid sequences of AF14 and AF52 are very close to that of D1.3. In particular, the amino acid side chains that contribute to contacts with both antigen and anti-Id are largely conserved in AF14 and AF52 compared with D1.3. Therapeutic immunizations against different pathogenic antigens using anti-Id antibodies have been proposed. Our experiments show that a response to an anti-Id immunogen elicits anti-anti-Id antibodies that are optimized for binding the anti-Id antibodies rather than the antigen.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The β-chemokine receptor CCR-5 is essential for the efficient entry of primary macrophage-tropic HIV-1 isolates into CD4+ target cells. To study CCR-5-dependent cell-to-cell fusion, we have developed an assay system based on the infection of CD4+ CCR-5+ HeLa cells with a Semliki Forest virus recombinant expressing the gp120/gp41 envelope (Env) from a primary clade B HIV-1 isolate (BX08), or from a laboratory T cell line-adapted strain (LAI). In this system, gp120/gp41 of the “nonsyncytium-inducing,” primary, macrophage-tropic HIV-1BX08 isolate, was at least as fusogenic as that of the “syncytium-inducing” HIV-1LAI strain. BX08 Env-mediated fusion was inhibited by the β-chemokines RANTES (regulated upon activation, normal T cell expressed and secreted) and macrophage inflammatory proteins 1β (MIP-1β) and by antibodies to CD4, whereas LAI Env-mediated fusion was insensitive to these β-chemokines. In contrast soluble CD4 significantly reduced LAI, but not BX08 Env-mediated fusion, suggesting that the primary isolate Env glycoprotein has a reduced affinity for CD4. The domains in gp120/gp41 involved in the interaction with the CD4 and CCR-5 molecules were probed using monoclonal antibodies. For the antibodies tested here, the greatest inhibition of fusion was observed with those directed to conformation-dependent, rather than linear epitopes. Efficient inhibition of fusion was not restricted to epitopes in any one domain of gp120/gp41. The assay was sufficiently sensitive to distinguish between antibody- and β-chemokine-mediated fusion inhibition using serum samples from patient BX08, suggesting that the system may be useful for screening human sera for the presence of biologically significant antibodies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mice infected with vesicular stomatitis virus (VSV), a cytopathic virus closely related to rabies virus, mount a virus-neutralizing antibody response protecting against lethal disease. VSVneutralizing monoclonal IgGs isolated from primary immune responses were devoid of somatic mutations, whereas most secondary and all hyperimmune response IgGs tested were hypermutated. A comparative analysis of recombinant single-chain antibody fragments (scFv-Cκ) revealed that even the germ-line precursor of one hypermutated antibody bound and neutralized VSV. Four somatic amino acid substitutions in VH increased by 300-fold the binding strength of monovalent scFv-Cκ. The multivalent binding avidity of germ-line scFv-Cκ was increased by more than 10-fold compared with the monovalent binding strength. In contrast, hypermutated scFv-Cκ did not show such avidity effects. Thus the overall binding difference between the germ-line and the hypermutated VSV-neutralizing antibody was only 10- to 15-fold. This may explain why primary germ-line antibodies and secondary hypermutated antibodies directed against pathogens such as viruses and bacteria expressing repetitive antibody determinants show rather similar binding qualities, whereas monovalently binding hapten-specific antibodies can show “affinity maturation” effects of up to 1000-fold.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of unknown cause that afflicts the central nervous system. MS is typified by a highly clonally restricted antigen-driven antibody response that is confined largely to the central nervous system. The major antigenic targets of this response and the role of antibody in disease pathogenesis remain unclear. To help resolve these issues, we cloned the IgG repertoire directly from active plaque and periplaque regions in MS brain and from B cells recovered from the cerebrospinal fluid of a patient with MS with subacute disease. We found that high-affinity anti-DNA antibodies are a major component of the intrathecal IgG response in the patients with MS that we studied. Furthermore, we show DNA-specific monoclonal antibodies rescued from two subjects with MS as well as a DNA-specific antibody rescued from an individual suffering from systemic lupus erythematosus bound efficiently to the surface of neuronal cells and oligodendrocytes. For two of these antibodies, cell-surface recognition was DNA dependent. Our findings indicate that anti-DNA antibodies may promote important neuropathologic mechanisms in chronic inflammatory disorders, such as MS and systemic lupus erythematosus.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We describe here a method, based on iterative colony filter screening, for the rapid isolation of binding specificities from a large synthetic repertoire of human antibody fragments in single-chain Fv configuration. Escherichia coli cells, expressing the library of antibody fragments, are grown on a porous master filter, in contact with a second filter coated with the antigen, onto which antibodies secreted by the bacteria are able to diffuse. Detection of antigen binding on the second filter allows the recovery of a number of E.coli cells, including those expressing the binding specificity of interest, which can be submitted to a second round of screening for the isolation of specific monoclonal antibodies. We tested the methodology using as antigen the ED-B domain of fibronectin, a marker of angiogenesis. From an antibody library of 7 × 108 clones, we recovered a number of specifically-binding antibodies of different aminoacid sequence. The antibody clone showing the strongest enzyme-linked immunosorbent assay signal (ME4C) was further characterised. Its epitope on the ED-B domain was mapped using the SPOT synthesis method, which uses a set of decapeptides spanning the antigen sequence synthesised and anchored on cellulose. ME4C binds to the ED-B domain with a dissociation constant Kd = 1 × 10–7 M and specifically stains tumour blood vessels, as shown by immunohistochemical analysis on tumour sections of human and murine origin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

New Zealand black x New Zealand white (NZB/W) F1 mice spontaneously develop an autoimmune syndrome with notable similarities to human systemic lupus erythematosus. Female NZB/WF1 mice produce high titers of antinuclear antibodies and invariably succumb to severe glomerulonephritis by 12 months of age. Although the development of the immune-complex nephritis is accompanied by abundant local and systemic complement activation, the role of proinflammatory complement components in disease progression has not been established. In this study we have examined the contribution of activated terminal complement proteins to the pathogenesis of the lupus-like autoimmune disease. Female NZB/W F1 mice were treated with a monoclonal antibody (mAb) specific for the C5 component of complement that blocks the cleavage of C5 and thus prevents the generation of the potent proinflammatory factors C5a and C5b-9. Continuous therapy with anti-C5 mAb for 6 months resulted in significant amelioration of the course of glomerulonephritis and in markedly increased survival. These findings demonstrate an important role for the terminal complement cascade in the progression of renal disease in NZB/W F1 mice, and suggest that mAb-mediated C5 inhibition may be a useful approach to the therapy of immune-complex glomerulonephritis in humans.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Antiphospholipid antibodies, including anticardiolipin antibodies (ACA), are strongly associated with recurrent thrombosis in patients with the antiphospholipid syndrome (APS). To date, reports about the binding specificities of ACA and their role(s) in causing and/or sustaining thrombosis in APS are conflicting and controversial. The plasmas of patients with APS, usually containing a mixture of autoantibodies, vary in binding specificity for different phospholipids/cofactors and vary in in vitro lupus anticoagulant activity. Although in vivo assays that allow assessment of the pathogenic procoagulant activity of patient autoantibodies have recently been developed, the complex nature of the mixed species prevented determination of the particular species responsible for in vivo thrombosis. We have generated two human IgG monoclonal ACA from an APS patient with recurrent thrombosis. Both bound to cardiolipin in the presence of 10% bovine serum, but not in its absence, and both were reactive against phosphatidic acid, but were nonreactive against purified human beta-2 glycoprotein 1, DNA, heparan sulfate, or four other test antigens. Both monoclonal autoantibodies lacked lupus anticoagulant activity and did not inhibit prothrombinase activity. Remarkably, one of the monoclonal antibodies has thrombogenic properties when tested in an in vivo mouse model. This finding provides the first direct evidence that a particular antiphospholipid antibody specificity may contribute to in vivo thrombosis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hepatitis C virus (HCV) is a major cause of chronic hepatitis. The virus does not replicate efficiently in cell cultures, and it is therefore difficult to assess infection-neutralizing antibodies and to evaluate protective immunity in vitro. To study the binding of the HCV envelope to cell-surface receptors, we developed an assay to assess specific binding of recombinant envelope proteins to human cells and neutralization thereof. HCV recombinant envelope proteins expressed in various systems were incubated with human cells, and binding was assessed by flow cytometry using anti-envelope antibodies. Envelope glycoprotein 2 (E2) expressed in mammalian cells, but not in yeast or insect cells, binds human cells with high affinity (Kd approximately 10(-8) M). We then assessed antibodies able to neutralize E2 binding in the sera of both vaccinated and carrier chimpanzees, as well as in the sera of humans infected with various HCV genotypes. Vaccination with recombinant envelope proteins expressed in mammalian cells elicited high titers of neutralizing antibodies that correlated with protection from HCV challenge. HCV infection does not elicit neutralizing antibodies in most chimpanzees and humans, although low titers of neutralizing antibodies were detectable in a minority of infections. The ability to neutralize binding of E2 derived from the HCV-1 genotype was equally distributed among sera from patients infected with HCV genotypes 1, 2, and 3, demonstrating that binding of E2 is partly independent of E2 hypervariable regions. However, a mouse monoclonal antibody raised against the E2 hypervariable region 1 can partially neutralize binding of E2, indicating that at least two neutralizing epitopes, one of which is hypervariable, should exist on the E2 protein. The neutralization-of-binding assay described will be useful to study protective immunity to HCV infection and for vaccine development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glycoprotein D (gD) of herpes simplex virus 1 (HSV-1) is required for stable attachment and penetration of the virus into susceptible cells after initial binding. We derived anti-idiotypic antibodies to the neutralizing monoclonal antibody HD1 to gD of HSV-1. These antibodies have the properties expected of antibodies against a gD receptor. Specifically, they bind to the surface of HEp-2, Vero, and HeLa cells susceptible to HSV infection and specifically react with a Mr 62,000 protein in these and other (143TK- and BHK) cell lines. They neutralize virion infectivity, drastically decrease plaque formation by impairing cell-to-cell spread of virions, and reduce polykaryocytosis induced by strain HFEM, which carries a syncytial (syn-) mutation. They do not affect HSV growth in a single-step cycle and plaque formation by an unrelated virus, indicating that they specifically affect the interaction of HSV gD) with a cell surface receptor. We conclude that the Mr 62,000 cell surface protein interacts with gD to enable spread of HSV-1 from cell to cell and virus-induced polykaryocytosis.