969 resultados para Anti-Lacerative Windshields.
Resumo:
A novel protein, named BAS-AH, was purified and characterized from the skin of the toad Bufo andrewsi. BAS-AH is a single chain protein and the apparent molecular weight is about 63 kDa as judged by SDS-PAGE. BAS-AH was determined to bind heme (0.89 mol heme/mol protein) as determined by pyridine haemochrome analysis. Fifty percentage cytotoxic concentration (CC50) of BAS-AH on C8166 cells was 9.5 mu M. However, at concentrations that showed little effect oil cell viability, BAS-AH displayed dose dependent inhibition oil HIV-1 infection and replication. The antiviral selectivity indexes corresponding to the measurements of syncytium formation and HIV-1 p24 (CC50/EC50) were 14.4 and 11.4, respectively, corresponding to the . BAS-AH also showed an inhibitory effect on the activity of recombinant HIV-1 reverse transcriptase (IC50 = 1.32 mu M). The N-terminal sequence of BAS-AH was determined to be NAKXKADVIGKISILLGQDNLSNIVAM, which exhibited little identity with other known anti-HIV-1 proteins. BAS-AH is devoid of antibacterial, protcolytic, trypsin inhibitory activity, (L)-amino acid oxidase activity and catalase activity. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Peptidomics and genomics analyses were used to study an anti-infection array of peptides of amphibian skin. 372 cDNA sequences of antimicrobial peptides were characterized from a single individual skin of the frog Odorrana grahami that encode 107 novel an
Resumo:
Surface vortex behavior in front of the tunnel intake was investigated in this paper. The critical submergence of vortex was discussed based on the concept of 'critical spherical sink surface' (CSSS). The vortex formation and evolution at the tunnel intake were analyzed based on the theory of CSSS considering the effect of circulation. A theory was proposed to explain the surface vortex. The theoretical development was verified by the physical model experiments of Xiluodu hydropower station. The radial velocity and vortex circulation were considered as the main factors that influence the formation and evolution of surface vortex. Finally, an anti-vortex intake configuration was proposed to weaken the air-core vortex in front of the tunnel intakes of the hydraulic structures. © 2011 Science China Press and Springer-Verlag Berlin Heidelberg.
Resumo:
Blood-feeding arthropods rely heavily on the pharmacological properties of their saliva to get a blood meal and suppress immune reactions of hosts. Little information is available on antihemostatic substances in horsefly salivary glands although their sal
Resumo:
A new lupane acid, 2 beta-carboxyl, 3 beta-hydroxyl-norlupA (1)-20 (29)-en-28-oic acid (1), together with five known lupane acid derivatives (2-6), were isolated from the stings of Gleditsia sinensis Lam.. Their structures were elucidated on the basis of
Resumo:
Background. The present study was undertaken to determine the role of preformed and induced anti-non-Gal antibodies in the rejection of hDAF pig-to-baboon kidney xenotransplants after anti-Gal antibody neutralization therapy. Methods. Seven baboons receiv
Resumo:
Results of the experimental formulation of an antifouling paint incorporating TBTO as toxic pigment are presented in this paper. Of the various resins tested, namely, phenolic, cashew nut shell liquid (CNSL), epoxy linseed oil with rosin and limed rosin, the paint composition with limed rosin gave the critical leaching rate of TBTO. Acid alkali test showed dissolution of matrix and visible migration of toxin to the surface. Accelerated corrosion tests had not recorded any signs of corrosion in panels painted with or without barrier coat. Raft exposure studies indicated that the new formulation could resist fouling accumulation on painted panels for 9 months.
Resumo:
目的:研究从药用植物金佛山雪胆分离的雪胆素A和雪胆素B两个三萜类化合物的体外抗HIV活性.方法:应用合胞体抑制实验、p24抗原产生的抑制实验、慢性感染细胞和正常细胞间的细胞融合抑制实验等技术检测化合物的体外抗HIV-l活性;利用HIV-l逆转录酶、蛋白酶抑制实验,NCp7锌离子逐出实验探讨化合物的作用机制.结果:雪胆素A和雪胆素B在体外有较好的抑制HIV-l活性,其活性主要表现为:(1)抑制HIV-l诱导合胞体形成,EC50值分别为3.09 μg·mL-1和2.53μg·mL-1;(2)抑制HIV- 急性感染的C8106细胞p24抗原产生,EC50值分别为3.97μg·mL-1和18.90μg·mL-1;(3)抑制HIV-1 慢性感染H9与正常C8166细胞间融合,EC50分别为1.76μg·mL-1和11.95μg·mL-1.雪胆素A和雪胆素B对HIV-l逆转录酶、蛋白酶、NCp7锌离子逐出均没有抑制作用.雪胆素A对HIV-1整合酶有微弱的结合活性,而雪胆素B对HIV-1整合酶没有结合活性.在共培养实验中,雪胆素A和雪胆素B预处理C8166细胞组比未经预处理细胞组能够更有效的抑制HIV-l活性.结论:化合物雪胆素A和雪胆素B体外有较好的抗HIV-1活性,可能主要作用于HIV-1病毒进入细胞阶段.
Resumo:
AIM: To determine whether trichobitacin, a novel ribosome-inactivating protein purified from the root tubers of Trichosanthes kirilowii, possesses the anti-HIV activity. METHODS: The inhibition of syncytial cell formation induced by human immunodeficiency virus type 1 (HIV-1),was determined under microscope, reduction of HIV-1 p24 antigen expression level was measured by ELISA, and decrease in numbers of HIV-1 antigen positive cells in acutely and-chronically infected cultures were detected by indirect immunofluorescence assay. RESULTS: Trichobitacin Was-found to greatly suppress syncytial cell formation induced by HIV-1 and to markedly reduce both expression of HIV-1 p24 antigen and the number of HIV antigen positive cells in acutely but not chronically HIV-1 infected culture. The median inhibitory concentration (IC50) in inhibition of syncytial cell formation and HIV antigen positive cells were 5 mu g.L-1 (95 % confidence limits: 1.3 - 20 mu g.L-1) and 0.09 mg.L-1 (95 % confidence limits: 0.011 - 0.755 mg.L-1), respectively. CONCLUSION: Trichobitacin is a novel ribosome-inactivating protein with anti-HIV-l activity.
Resumo:
Trichosanthin (TCS) is a type I ribosome-inactivating protein that has a wide range of pharmacological activities. The present study investigated the effectiveness of TCS on herpes simplex virus (HSV-1). The anti-viral activity and toxicity of TCS on Vero
Resumo:
Trichosanthin (TCS) is a type I ribosome inactivating (RI) protein possessing anti-tumor and antiviral activity, including human immunodeficiency virus (HIV). The mechanism of these actions is not entirely clear, but is generally attributed to its RI property. In order to study the relationship between the anti-HIV-1 activity of TCS and its RI activity, three TCS mutants with different RI activities were constructed by using site-directed mutagenesis. The anti-HIV-1 activities of the three mutants were tested in vitro. Results showed that two TCS mutants, namely TCSM((120-123)), TCSE160A/E189A, with the greatest decrease in RI activity, lost almost all of the anti-HIV activity and cytopathic effect. Another mutant TCSR122G, which exhibited a 160-fold decrease in RI activity, retained some anti-HIV activity. The results from this study suggested that RI activity of TCS may have significant contribution to its anti-HIV-1 property. (C) 2002 Published by Elsevier Science B.V. on behalf of the Federation of European Biochemical Societies.
Resumo:
Trichosanthin (TCS) is a type I ribosome-inactivating (RI) protein possessing multiple biological and pharmacological activities. Its major action is inhibition of human immunodeficiency virus (HIV) replication but the mechanism is still elusive. All evidences showed that this action is related to its RI activity. Previous studies found that TCS mutants with reduced RI activity simultaneously lost some anti-HIV activity. In this study, an exception was demonstrated by two TCS mutants retaining almost all RI activity but were devoid of anti-HIV-1 activity. Five mutants were constructed by using site-directed mutagenesis with either deletion or addition of amino acids to the C-terminal sequence. Results showed that the RI activity of mutants with C-terminal deletion mutants (TCSC2, TCSC4, and TCSC14) decreased by 1.2-3.3-fold with parallel downshifting of its anti-HIV-1 activity (1.4-4.8-fold). Another two mutants, TCSC19aa and TCSKDEL having 19 amino acid extension and a KDEL signal sequence added to the C-terminal sequence, retained all RI activity but subsequently lost most of the anti-HIV-1 activity. These findings suggested that ribosome inactivation alone might not be adequate to explain the anti-HIV action of TCS. (C) 2003 Elsevier Science (USA). All rights reserved.
Resumo:
Xanthohumol, prenylchacone flavonoid, is a natural product with multi-biofunctions purified from Hops Humulus lupulus. Its anti-HIV-1 activity was tested in the present study. Results showed that xanthohumol inhibited HIV-1 induced cytopathic effects, the production of viral p24 antigen and reverse transcriptase in C8166 lymphocytes at non-cytotoxic concentration. The EC50 values were 0.82, 1.28 and 0.50 mug/ml, respectively. The therapeutic index (TI) was about 10.8. Xanthohumol also inhibited HIV-1 replication in PBMC with EC50 value of 20.74 mug/ml. The activity of recombinant HIV-1 reverse transcriptase and the HIV-1 entry were not inhibited by xanthohumol. The results from this study suggested that xanthohumol is effective against HIV-1 and might serve as an interesting lead compound. It may represent a novel chemotherapeutic agent for HIV-1 infection. However, the mechanism of its anti-HIV-1 effect needs to be further clarified. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Baicalin (BA) has been shown with anti-HIV-1 activity. Zinc is a nutrient element. The anti-HIV-1 activity of zinc complex of baicalin (BA-Zn) in vitro was studied and compared with the anti-HIV-1 activities between BA and BA-Zn in the present study. Our results suggested that BA-Zn has lower cytotoxicity and higher anti-HIV-1 activity compared with those of BA in vitro. The CC(50)s of BA-Zn and BA were 221.52 and 101.73 muM, respectively. The cytotoxicity of BA-Zn was about 1.2-fold lower than that of BA. The BA and BA-Zn inhibited HIV-1 induced syncytium formation, HIV-1 p24 antigen and HIV-1 RT production. The EC(50)s of BA-Zn on inhibiting HIV-1 induced syncytium formation (29.08 muM) and RT production (31.17 muM) were lower than those of BA (43.27 and 47.34 muM, respectively). BA-Zn was more effective than BA in inhibiting the activities of recombinant RT and HIV-1 entry into host cells. Zinc coupling enhanced the anti-HTV-1 activity of baicalin. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
Trichosanthin (TCS) was the first ribosome inactivating protein found to possess anti-HIV-1 activity. Phase I/II clinical trial of this compound had been done. Antigenicity and short plasma half-life were the major side effects preventing further clinical trial. Modification of TCS is therefore necessary to revive the interest to develop this compound as an anti-HIV agent. Three potential antigenic sites (Ser-7, Lys-173, and Gln-219) were identified by computer modeling. Through site-directed mutagenesis, these three antigenic amino acids were mutated to a cysteine residue resulting in 3 TCS mutants, namely S7C, K173C, and Q219C. These mutants were further coupled to polyethylene glycol with a molecular size of 20 kDa (PEG) via the cysteine residue. This produced another three TCS derivatives, namely PEG(20)k-S7C, PEG(20)k-K173C, and PEG(20)k-Q219C. PEGylation had been widely used recently to decrease immunogenicity by masking the antigenic sites and prolong plasma half-life by expanding the molecular size. The in vitro anti-HIV-1 activity of these mutants and derivatives was tested. Results showed that the anti-HIV-1 activity of S7C, K173C, and Q219C was decreased by about 1.5- to 5.5-fold with slightly lower cytotoxicity. On the other hand, PEGylation produced larger decrease (20- to 30-fold) in anti-HIV activity. Cytotoxicity was, however, weakened only slightly by about 3-fold. The in vitro study showed that the anti-HIV activity of PEGylated TCS was retained with reduced potency. The in vivo activity is expected to have only slightly changed due to other beneficial effects like prolonged half-life. (C) 2004 Elsevier Inc. All rights reserved.