964 resultados para Angular retreat
Resumo:
O objetivo deste estudo foi investigar o efeito do envelhecimento na sensibilidade a frequências angulares com luminância fotópica (42,6cd/m²). Foram mensuradas curvas de sensibilidade ao contraste em oito adultos jovens (20-29 anos) e oito idosos (60-70 anos) por meio do método psicofísico da escolha forçada. Todos os participantes estavam livres de doenças oculares identificáveis e tinham acuidade visual normal. Os resultados mostraram que o grupo de idosos apresentou alteração significante na faixa de frequências baixas e altas. Concluiu-se que o envelhecimento parece afetar o processamento de frequências angulares baixas e altas em condições de luminância fotópica.
Resumo:
Desembocaduras são ambientes bastante dinâmicos e sujeitos à complexa interação entre fatores estabilizadores e desestabilizadores. Dependendo dessa interação, desembocaduras podem apresentar a tendência de migração ao longo de barreiras arenosas. Um dos mecanismos mais eficientes de transporte de sedimento paralelo à costa, e consequentemente migração de canais, são as correntes longitudinais geradas pelas ondas se aproximando obliquamente à costa. A motivação do presente trabalho é entender o comportamento morfodinâmico do sistema de desembocadura do rio Itapocú, localizado no centro-norte de Santa Catarina (SC), frente aos processos forçantes que atuam na sua migração ao longo da linha de costa. A morfologia dos pontais arenosos foi obtida a partir de levantamentos morfológicos com o uso de DGPS. Para analisar a refração de ondas foi utilizado o modelo numérico MIKE 21 SW, sendo considerados como condições de contorno os dados de ondas referentes ao ano de 2002 e os dados de ondas previstos referentes ao período de coleta. Os dados de saída do modelo foram utilizados para estimar a deriva litorânea potencial na região. Os resultados morfológicos obtidos demonstraram uma migração da desembocadura para o norte durante o período analisado, sendo mais intenso durante o inverno e o verão. Ondas incidentes do quadrante sul sofreram mais o fenômeno da refração e as ondas de leste apresentaram menor variação angular ao se aproximarem à costa. A deriva litorânea potencial anual para os dados de ondas de 2002 apresentou sentido norte-sul, com inversão de sentido durante o outono. Utilizando os dados de ondas previstas para o período dos levantamentos, a deriva litorânea potencial estimada apresentou sentido sul-norte, concordando com a migração observada. Na região próxima a desembocadura, nos pontais arenosos, a deriva potencial apresentou direção para o norte durante todas as estações. Os dados de descarga fluvial não apresentaram influência na migração do canal, porém apresentaram uma relação com a largura do mesmo sazonalmente.Os dados de morfologia juntamente com os dados de deriva litorânea referentes às ondas de 2004/2005 mostraram claramente a migração do canal para o norte sendo a deriva a principal contribuinte para a migração da desembocadura.
Resumo:
Rineloricaria daraha, new species, is described from the rio Daraá, tributary of rio Negro, northwestern Amazonas State, Brazil. The new species is diagnosed by having seven branched pectoral-fin rays, finger-like papillae on the lower lip, a large multi-angular preanal plate, and at least four quadrangular plates of variable size surrounding the preanal plate. The new species is known only from rio Daraá and its waterfalls.
Resumo:
INTRODUÇÃO: Populações de Triatoma sordida Stål, 1859 foram investigadas quanto à suscetibilidade à deltametrina. MÉTODOS: Análise por meio de bioensaios por aplicação tópica em 11 populações de T. sordida procedentes dos Estados de Goiás, Mato Grosso e Mato Grosso do Sul. RESULTADOS: As estimativas de DL50 e RR50 demonstraram elevados níveis de suscetibilidade (DL50 < 1 e RR50 < 2). Entretanto, as análises do coeficiente angular da curva dose resposta revelaram que as populações de triatomíneos dos municípios de Firminópolis/GO, Posse/GO, Poxoréu/MT, Douradina/MS e Aparecida do Taboado/MS apresentam maiores probabilidades de evolução de resistência, portanto, mais propícias a tolerar o tratamento com deltametrina. CONCLUSÕES: Detectaram-se pequenas alterações de suscetibilidade e baixos níveis de resistência, porém as alterações temporais de suscetibilidade deverão ser continuamente monitoradas, a fim de nortear adequadamente as ações de controle dos vetores da DC.
Resumo:
Using series solutions and time-domain evolutions, we probe the eikonal limit of the gravitational and scalar-field quasinormal modes of large black holes and black branes in anti-de Sitter backgrounds. These results are particularly relevant for the AdS/CFT correspondence, since the eikonal regime is characterized by the existence of long-lived modes which (presumably) dominate the decay time scale of the perturbations. We confirm all the main qualitative features of these slowly damped modes as predicted by Festuccia and Liu [G. Festuccia and H. Liu, arXiv:0811.1033.] for the scalar-field (tensor-type gravitational) fluctuations. However, quantitatively we find dimensional-dependent correction factors. We also investigate the dependence of the quasinormal mode frequencies on the horizon radius of the black hole (brane) and the angular momentum (wave number) of vector- and scalar-type gravitational perturbations.
Resumo:
This paper presents a positional FEM formulation to deal with geometrical nonlinear dynamics of shells. The main objective is to develop a new FEM methodology based on the minimum potential energy theorem written regarding nodal positions and generalized unconstrained vectors not displacements and rotations. These characteristics are the novelty of the present work and avoid the use of large rotation approximations. A nondimensional auxiliary coordinate system is created, and the change of configuration function is written following two independent mappings from which the strain energy function is derived. This methodology is called positional and, as far as the authors' knowledge goes, is a new procedure to approximated geometrical nonlinear structures. In this paper a proof for the linear and angular momentum conservation property of the Newmark beta algorithm is provided for total Lagrangian description. The proposed shell element is locking free for elastic stress-strain relations due to the presence of linear strain variation along the shell thickness. The curved, high-order element together with an implicit procedure to solve nonlinear equations guarantees precision in calculations. The momentum conserving, the locking free behavior, and the frame invariance of the adopted mapping are numerically confirmed by examples. Copyright (C) 2009 H. B. Coda and R. R. Paccola.
Resumo:
Consider that an incident plane wave is scattered by a homogeneous and isotropic magnetic sphere of finite radius. We determine, by means of the rigorous Mie theory, an exact expression for the time-averaged electromagnetic energy within this particle. For magnetic scatterers, we find that the value of the average internal energy in the resonance picks is much larger than the one associated with a scatterer with the same nonmagnetic medium properties. This result is valid even, and especially, for low size parameter values. Expressions for the contributions of the radial and angular field components to the internal energy are determined. For the analytical study of the weak absorption regime, we derive an exact expression for the absorption cross section in terms of the magnetic Mie internal coefficients. We stress that, although the electromagnetic scattering by particles is a well-documented topic, almost no attention has been devoted to magnetic scatterers. Our aim is to provide some new analytical results, which can be used for magnetic particles, and emphasize the unusual properties of the magnetic scatters, which could be important in some applications. (C) 2010 Optical Society of America
Resumo:
An investigation was carried out to study the potential use of the angular distribution of scattered photons by human breast samples for a rapid identification of neoplasias of breast tissues. This technique has possible applications as diagnostic aid for breast cancer. In this work, a commercial powder diffractometer was used to obtain the scattering profiles from breast tissues histopathologically classified as normal breast tissues, fibroadenomas (benign breast diseases) and carcinomas (malignant breast diseases), in the interval 0.02 angstrom(-1) < x < 0.62 angstrom(-1). The experimental methods and data corrections are discussed in detail, and they included background subtraction, polarization, self-attenuation and geometric effects. The validation of the experimental procedure was achieved through an analysis of water sample. The results showed that the scattering profile is a unique impression of each type of tissue, being correlated with their microscopic morphological features. Multivariate analysis was applied to these profiles in order to verify if the information carried by these scattering profiles allow the differentiation between normal, benign and malignant breast tissues. The statistical analysis results showed that a correct identification of 75% of the analyzed samples is accomplished. The values of sensibility and specificity of this method in correctly differentiating between normal and neoplastic samples were 95.6% and 82.3%, respectively, while the values for differentiation between benign and malignant neoplasias were 78.6% and 62.5%. These initial results indicate the feasible use of commercial powder diffractometer to provide a rapid diagnostic with a high sensitivity.
Resumo:
We present measurements of net charge fluctuations in Au+Au collisions at s(NN)=19.6, 62.4, 130, and 200 GeV, Cu+Cu collisions at s(NN)=62.4 and 200 GeV, and p+p collisions at s=200 GeV using the dynamical net charge fluctuations measure nu(+-,dyn). We observe that the dynamical fluctuations are nonzero at all energies and exhibit a modest dependence on beam energy. A weak system size dependence is also observed. We examine the collision centrality dependence of the net charge fluctuations and find that dynamical net charge fluctuations violate 1/N(ch) scaling but display approximate 1/N(part) scaling. We also study the azimuthal and rapidity dependence of the net charge correlation strength and observe strong dependence on the azimuthal angular range and pseudorapidity widths integrated to measure the correlation.
Resumo:
We present the first spin alignment measurements for the K*(0)(892) and phi(1020) vector mesons produced at midrapidity with transverse momenta up to 5 GeV/c at root s(NN) = 200 GeV at RHIC. The diagonal spin-density matrix elements with respect to the reaction plane in Au+Au collisions are rho(00) = 0.32 +/- 0.04 (stat) +/- 0.09 (syst) for the K*(0) (0.8 < p(T) < 5.0 GeV/c) and rho(00) = 0.34 +/- 0.02 (stat) +/- 0.03 (syst) for the phi (0.4 < p(T) < 5.0 GeV/c) and are constant with transverse momentum and collision centrality. The data are consistent with the unpolarized expectation of 1/3 and thus no evidence is found for the transfer of the orbital angular momentum of the colliding system to the vector-meson spins. Spin alignments for K(*0) and phi in Au+Au collisions were also measured with respect to the particle's production plane. The phi result, rho(00) = 0.41 +/- 0.02 (stat) +/- 0.04 (syst), is consistent with that in p+p collisions, rho(00) = 0.39 +/- 0.03 (stat) +/- 0.06 (syst), also measured in this work. The measurements thus constrain the possible size of polarization phenomena in the production dynamics of vector mesons.
Resumo:
A new age-redshift test is proposed in order to constrain H(0) on the basis of the existence of old high-redshift galaxies (OHRGs). In the flat Lambda cold dark matter model, the value of H(0) is heavily dependent on the mass density parameter Omega(M) = 1- Omega(Lambda). Such a degeneracy can be broken through a joint analysis involving the OHRG and baryon acoustic oscillation signature. By assuming a galaxy incubation time, t(inc) = 0.8 +/- 0.4 Gyr, our joint analysis yields a value of H(0) = 71 +/- 4 km s(-1) Mpc(-1) (1 sigma) with the best-fit density parameter Omega(M) = 0.27 +/- 0.03. Such results are in good agreement with independent studies from the Hubble Space Telescope key project and recent estimates of the Wilkinson Microwave Anisotropy Probe, thereby suggesting that the combination of these two independent phenomena provides an interesting method to constrain the Hubble constant.
Resumo:
We present K-band spectra of newly born OB stars in the obscured Galactic giant H II region W51A and approximate to 0.8 '' angular resolution images in the J, H, and K(S)-bands. Four objects have been spectroscopically classified as O-type stars. The mean spectroscopic parallax of the four stars gives a distance of 2.0 +/- 0.3 kpc (error in the mean), significantly smaller than the radio recombination line kinematic value of 5.5 kpc or the values derived from maser proper motion observations (6-8 kpc). The number of Lyman continuum photons from the contribution of all massive stars (NLyc approximate to 1.5 x 10(50) s(-1)) is in good agreement with that inferred from radio recombination lines (NLyc = 1.3 x 10(50) s(-1)) after accounting for the smaller distance derived here. We present analysis of archival high angular resolution images (NAOS CONICA at VLT and T-ReCS at Gemini) of the compact region W51 IRS 2. The K(S)-band images resolve the infrared source IRS 2 indicating that it is a very young compact H II region. Sources IRS 2E was resolved into compact cluster (within 660 AU of projected distance) of three objects, but one of them is just bright extended emission. W51d1 and W51d2 were identified with compact clusters of three objects (maybe four in the case of W51d1) each one. Although IRS 2E is the brightest source in the K-band and at 12.6 mu m, it is not clearly associated with a radio continuum source. Our spectrum of IRS 2E shows, similar to previous work, strong emission in Br gamma and He I, as well as three forbidden emission lines of Fe III and emission lines of molecular hydrogen (H(2)) marking it as a massive young stellar object.
Resumo:
The recent interferometric study of Achernar, leading to the conclusion that its geometrical oblateness cannot be explained by the Roche approximation, has stirred substantial interest in the community, in view of its potential impact on many fields of stellar astrophysics. It is the purpose of this Letter to reinterpret the interferometric observations with a fast-rotating, gravity-darkened central star surrounded by a small equatorial disk, whose presence is consistent with contemporaneous spectroscopic data. We find that we can fit the available data only assuming a critically rotating central star. We identified two different disk models that simultaneously fit the spectroscopic, polarimetric, and interferometric observational constraints: a tenuous disk in hydrostatic equilibrium (i.e., with small scale height) and a smaller, scale height enhanced disk. We believe that these relatively small disks correspond to the transition region between the photosphere and the circumstellar environment and that they are probably perturbed by some photospheric mechanism. The study of this interface between photosphere and circumstellar disk for near-critical rotators is crucial to our understanding of the Be phenomenon and the mass and angular momentum loss of stars in general. This work shows that it is nowadays possible to directly study this transition region from simultaneous multitechnique observations.
Resumo:
Magnetic fields of intensities similar to those in our galaxy are also observed in high redshift galaxies, where a mean field dynamo would not have had time to produce them. Therefore, a primordial origin is indicated. It has been suggested that magnetic fields were created at various primordial eras: during inflation, the electroweak phase transition, the quark-hadron phase transition (QHPT), during the formation of the first objects, and during reionization. We suggest here that the large-scale fields similar to mu G, observed in galaxies at both high and low redshifts by Faraday rotation measurements (FRMs), have their origin in the electromagnetic fluctuations that naturally occurred in the dense hot plasma that existed just after the QHPT. We evolve the predicted fields to the present time. The size of the region containing a coherent magnetic field increased due to the fusion of smaller regions. Magnetic fields (MFs) similar to 10 mu G over a comoving similar to 1 pc region are predicted at redshift z similar to 10. These fields are orders of magnitude greater than those predicted in previous scenarios for creating primordial magnetic fields. Line-of-sight average MFs similar to 10(-2) mu G, valid for FRMs, are obtained over a 1 Mpc comoving region at the redshift z similar to 10. In the collapse to a galaxy (comoving size similar to 30 kpc) at z similar to 10, the fields are amplified to similar to 10 mu G. This indicates that the MFs created immediately after the QHPT (10(-4) s), predicted by the fluctuation-dissipation theorem, could be the origin of the similar to mu G fields observed by FRMs in galaxies at both high and low redshifts. Our predicted MFs are shown to be consistent with present observations. We discuss the possibility that the predicted MFs could cause non-negligible deflections of ultrahigh energy cosmic rays and help create the observed isotropic distribution of their incoming directions. We also discuss the importance of the volume average magnetic field predicted by our model in producing the first stars and in reionizing the Universe.
Resumo:
It is shown that, for accretion disks, the height scale is a constant whenever hydrostatic equilibrium and the subsonic turbulence regime hold in the disk. In order to have a variable height scale, processes are needed that contribute an extra term to the continuity equation. This contribution makes the viscosity parameter much greater in the outer region and much smaller in the inner region. Under these circumstances, turbulence is the presumable source of viscosity in the disk.