948 resultados para Angular coefficient
Resumo:
Wir betrachten Systeme von endlich vielen Partikeln, wobei die Partikel sich unabhängig voneinander gemäß eindimensionaler Diffusionen [dX_t = b(X_t),dt + sigma(X_t),dW_t] bewegen. Die Partikel sterben mit positionsabhängigen Raten und hinterlassen eine zufällige Anzahl an Nachkommen, die sich gemäß eines Übergangskerns im Raum verteilen. Zudem immigrieren neue Partikel mit einer konstanten Rate. Ein Prozess mit diesen Eigenschaften wird Verzweigungsprozess mit Immigration genannt. Beobachten wir einen solchen Prozess zu diskreten Zeitpunkten, so ist zunächst nicht offensichtlich, welche diskret beobachteten Punkte zu welchem Pfad gehören. Daher entwickeln wir einen Algorithmus, um den zugrundeliegenden Pfad zu rekonstruieren. Mit Hilfe dieses Algorithmus konstruieren wir einen nichtparametrischen Schätzer für den quadrierten Diffusionskoeffizienten $sigma^2(cdot),$ wobei die Konstruktion im Wesentlichen auf dem Auffüllen eines klassischen Regressionsschemas beruht. Wir beweisen Konsistenz und einen zentralen Grenzwertsatz.
Resumo:
Molecular dynamics simulations of silicate and borate glasses and melts: Structure, diffusion dynamics and vibrational properties. In this work computer simulations of the model glass formers SiO2 and B2O3 are presented, using the techniques of classical molecular dynamics (MD) simulations and quantum mechanical calculations, based on density functional theory (DFT). The latter limits the system size to about 100−200 atoms. SiO2 and B2O3 are the two most important network formers for industrial applications of oxide glasses. Glass samples are generated by means of a quench from the melt with classical MD simulations and a subsequent structural relaxation with DFT forces. In addition, full ab initio quenches are carried out with a significantly faster cooling rate. In principle, the structural properties are in good agreement with experimental results from neutron and X-ray scattering, in all cases. A special focus is on the study of vibrational properties, as they give access to low-temperature thermodynamic properties. The vibrational spectra are calculated by the so-called ”frozen phonon” method. In all cases, the DFT curves show an acceptable agreement with experimental results of inelastic neutron scattering. In case of the model glass former B2O3, a new classical interaction potential is parametrized, based on the liquid trajectory of an ab initio MD simulation at 2300 K. In this course, a structural fitting routine is used. The inclusion of 3-body angular interactions leads to a significantly improved agreement of the liquid properties of the classical MD and ab initio MD simulations. However, the generated glass structures, in all cases, show a significantly lower fraction of 3-membered planar boroxol rings as predicted by experimental results (f=60%-80%). The largest boroxol ring fraction of f=15±5% is observed in the full ab initio quenches from 2300 K. In case of SiO2, the glass structures after the quantum mechanical relaxation are the basis for calculations of the linear thermal expansion coefficient αL(T), employing the quasi-harmonic approximation. The striking observation is a change change of sign of αL(T) going along with a temperature range of negative αL(T) at low temperatures, which is in good agreement with experimental results.
Resumo:
We show that to each inner function, there corresponds at least one interpolating Blaschke product whose angular derivatives have precisely the same behavior as the given inner function. We characterize the Blaschke products invertible in the closed algebra H-infinity[(b) over bar : b has finite angular derivative everywhere. We study the most well-known example of a Blaschke product with infinite angular derivative everywhere and show that it is an interpolating Blaschke product. We conclude the paper with a method for constructing thin Blaschke products with infinite angular derivative everywhere.
Resumo:
We show that to each inner function, there corresponds at least one interpolating Blaschke product whose angular derivatives have precisely the same behavior as the given inner function. We characterize the Blaschke products invertible in the closed algebra generated by the algebra of bounded analytic functions and the conjugates of Blaschke products with angular derivative finite everywhere. We study the most well-known example of a Blaschke product with infinite angular derivative everywhere and show that it is an interpolating Blaschke product. We conclude the paper with a method for constructing thin Blaschke products with infinite angular derivative everywhere.
Resumo:
Digital signal processing (DSP) techniques for biological sequence analysis continue to grow in popularity due to the inherent digital nature of these sequences. DSP methods have demonstrated early success for detection of coding regions in a gene. Recently, these methods are being used to establish DNA gene similarity. We present the inter-coefficient difference (ICD) transformation, a novel extension of the discrete Fourier transformation, which can be applied to any DNA sequence. The ICD method is a mathematical, alignment-free DNA comparison method that generates a genetic signature for any DNA sequence that is used to generate relative measures of similarity among DNA sequences. We demonstrate our method on a set of insulin genes obtained from an evolutionarily wide range of species, and on a set of avian influenza viral sequences, which represents a set of highly similar sequences. We compare phylogenetic trees generated using our technique against trees generated using traditional alignment techniques for similarity and demonstrate that the ICD method produces a highly accurate tree without requiring an alignment prior to establishing sequence similarity.