986 resultados para Analytic-numerical solutions
Resumo:
We construct exact solutions for a system of two coupled nonlinear partial differential equations describing the spatio-temporal dynamics of a predator-prey system where the prey per capita growth rate is subject to the Allee effect. Using the G'/G expansion method, we derive exact solutions to this model for two different wave speeds. For each wave velocity we report three different forms of solutions. We also discuss the biological relevance of the solutions obtained. © 2012 Elsevier B.V.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This work is concerned with numerical simulation of axisymmetric viscoelastic free surface flows using the Phan-Thien-Tanner (PTT) constitutive equation. A finite difference technique for solving the governing equations for unsteady incompressible flows written in Cylindrical coordinates on a staggered grid is described. The fluid is modelled by a Marker-and-Cell type method and an accurate representation of the fluid surface is employed. The full free surface stress conditions are applied. The numerical method is verified by comparing numerical predictions of fully developed flow in a pipe with the corresponding analytic solutions. To demonstrate that the numerical method can simulate axisymmetric free surface flows governed by the PTT model, numerical results of the flow evolution of a drop impacting on a rigid dry plate are presented. In these simulations, the rheological effects of the parameters epsilon and xi are investigated.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
An approximate analytic expression for the eigenenergies of the anharmonic oscillator V(x)=Ax6+Bx2 is introduced, starting from particular analytic solutions which are valid when certain relations between the parameters A and B are held. © 1995 The American Physical Society.
Resumo:
Warrick and Hussen developed in the nineties of the last century a method to scale Richards' equation (RE) for similar soils. In this paper, new scaled solutions are added to the method of Warrick and Hussen considering a wider range of soils regardless of their dissimilarity. Gardner-Kozeny hydraulic functions are adopted instead of Brooks-Corey functions used originally by Warrick and Hussen. These functions allow to reduce the dependence of the scaled RE on the soil properties. To evaluate the proposed method (PM), the scaled RE was solved numerically using a finite difference method with a fully implicit scheme. Three cases were considered: constant-head infiltration, constant-flux infiltration, and drainage of an initially uniform wet soil. The results for five texturally different soils ranging from sand to clay (adopted from the literature) showed that the scaled solutions were invariant to a satisfactory degree. However, slight deviations were observed mainly for the sandy soil. Moreover, the scaled solutions deviated when the soil profile was initially wet in the infiltration case or when deeply wet in the drainage condition. Based on the PM, a Philip-type model was also developed to approximate RE solutions for the constant-head infiltration. The model showed a good agreement with the scaled RE for the same range of soils and conditions, however only for Gardner-Kozeny soils. Such a procedure reduces numerical calculations and provides additional opportunities for solving the highly nonlinear RE for unsaturated water flow in soils. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Scaling methods allow a single solution to Richards' equation (RE) to suffice for numerous specific cases of water flow in unsaturated soils. During the past half-century, many such methods were developed for similar soils. In this paper, a new method is proposed for scaling RE for a wide range of dissimilar soils. Exponential-power (EP) functions are used to reduce the dependence of the scaled RE on the soil hydraulic properties. To evaluate the proposed method, the scaled RE was solved numerically considering two test cases: infiltration into relatively dry soils having initially uniform water content distributions, and gravity-dominant drainage occurring from initially wet soil profiles. Although the results for four texturally different soils ranging from sand to heavy clay (adopted from the UNSODA database) showed that the scaled solution were invariant for a wide range of flow conditions, slight deviations were observed when the soil profile was initially wet in the infiltration case or deeply wet in the drainage case. The invariance of the scaled RE makes it possible to generalize a single solution of RE to many dissimilar soils and conditions. Such a procedure reduces the numerical calculations and provides additional opportunities for solving the highly nonlinear RE for unsaturated water flow in soils.
Resumo:
This work describes a methodology to simulate free surface incompressible multiphase flows. This novel methodology allows the simulation of multiphase flows with an arbitrary number of phases, each of them having different densities and viscosities. Surface and interfacial tension effects are also included. The numerical technique is based on the GENSMAC front-tracking method. The velocity field is computed using a finite-difference discretization of a modification of the NavierStokes equations. These equations together with the continuity equation are solved for the two-dimensional multiphase flows, with different densities and viscosities in the different phases. The governing equations are solved on a regular Eulerian grid, and a Lagrangian mesh is employed to track free surfaces and interfaces. The method is validated by comparing numerical with analytic results for a number of simple problems; it was also employed to simulate complex problems for which no analytic solutions are available. The method presented in this paper has been shown to be robust and computationally efficient. Copyright (c) 2012 John Wiley & Sons, Ltd.
Resumo:
Using the elements of the so-called KBc gamma subalgebra, we study a class of analytic solutions depending on a single function F(K) in the modified cubic superstring field theory. We compute the energy associated to these solutions and show that the result can be expressed in terms of a contour integral. For a particular choice of the function F(K), we show that the energy is given by integer multiples of a single D-brane tension.
Resumo:
Máster en Oceanografía
Resumo:
Wave breaking is an important coastal process, influencing hydro-morphodynamic processes such as turbulence generation and wave energy dissipation, run-up on the beach and overtopping of coastal defence structures. During breaking, waves are complex mixtures of air and water (“white water”) whose properties affect velocity and pressure fields in the vicinity of the free surface and, depending on the breaker characteristics, different mechanisms for air entrainment are usually observed. Several laboratory experiments have been performed to investigate the role of air bubbles in the wave breaking process (Chanson & Cummings, 1994, among others) and in wave loading on vertical wall (Oumeraci et al., 2001; Peregrine et al., 2006, among others), showing that the air phase is not negligible since the turbulent energy dissipation involves air-water mixture. The recent advancement of numerical models has given valuable insights in the knowledge of wave transformation and interaction with coastal structures. Among these models, some solve the RANS equations coupled with a free-surface tracking algorithm and describe velocity, pressure, turbulence and vorticity fields (Lara et al. 2006 a-b, Clementi et al., 2007). The single-phase numerical model, in which the constitutive equations are solved only for the liquid phase, neglects effects induced by air movement and trapped air bubbles in water. Numerical approximations at the free surface may induce errors in predicting breaking point and wave height and moreover, entrapped air bubbles and water splash in air are not properly represented. The aim of the present thesis is to develop a new two-phase model called COBRAS2 (stands for Cornell Breaking waves And Structures 2 phases), that is the enhancement of the single-phase code COBRAS0, originally developed at Cornell University (Lin & Liu, 1998). In the first part of the work, both fluids are considered as incompressible, while the second part will treat air compressibility modelling. The mathematical formulation and the numerical resolution of the governing equations of COBRAS2 are derived and some model-experiment comparisons are shown. In particular, validation tests are performed in order to prove model stability and accuracy. The simulation of the rising of a large air bubble in an otherwise quiescent water pool reveals the model capability to reproduce the process physics in a realistic way. Analytical solutions for stationary and internal waves are compared with corresponding numerical results, in order to test processes involving wide range of density difference. Waves induced by dam-break in different scenarios (on dry and wet beds, as well as on a ramp) are studied, focusing on the role of air as the medium in which the water wave propagates and on the numerical representation of bubble dynamics. Simulations of solitary and regular waves, characterized by both spilling and plunging breakers, are analyzed with comparisons with experimental data and other numerical model in order to investigate air influence on wave breaking mechanisms and underline model capability and accuracy. Finally, modelling of air compressibility is included in the new developed model and is validated, revealing an accurate reproduction of processes. Some preliminary tests on wave impact on vertical walls are performed: since air flow modelling allows to have a more realistic reproduction of breaking wave propagation, the dependence of wave breaker shapes and aeration characteristics on impact pressure values is studied and, on the basis of a qualitative comparison with experimental observations, the numerical simulations achieve good results.
Resumo:
Ion channels are pore-forming proteins that regulate the flow of ions across biological cell membranes. Ion channels are fundamental in generating and regulating the electrical activity of cells in the nervous system and the contraction of muscolar cells. Solid-state nanopores are nanometer-scale pores located in electrically insulating membranes. They can be adopted as detectors of specific molecules in electrolytic solutions. Permeation of ions from one electrolytic solution to another, through a protein channel or a synthetic pore is a process of considerable importance and realistic analysis of the main dependencies of ion current on the geometrical and compositional characteristics of these structures are highly required. The project described by this thesis is an effort to improve the understanding of ion channels by devising methods for computer simulation that can predict channel conductance from channel structure. This project describes theory, algorithms and implementation techniques used to develop a novel 3-D numerical simulator of ion channels and synthetic nanopores based on the Brownian Dynamics technique. This numerical simulator could represent a valid tool for the study of protein ion channel and synthetic nanopores, allowing to investigate at the atomic-level the complex electrostatic interactions that determine channel conductance and ion selectivity. Moreover it will provide insights on how parameters like temperature, applied voltage, and pore shape could influence ion translocation dynamics. Furthermore it will help making predictions of conductance of given channel structures and it will add information like electrostatic potential or ionic concentrations throughout the simulation domain helping the understanding of ion flow through membrane pores.
Resumo:
Aim of this thesis was to further extend the applicability of the Fourier-transform (FT) rheology technique especially for non-linear mechanical characterisation of polymeric materials on the one hand and to investigated the influence of the degree of branching on the linear and non-linear relaxation behaviour of polymeric materials on the other hand. The latter was achieved by employing in particular FT-rheology and other rheological techniques to variously branched polymer melts and solutions. For these purposes, narrowly distributed linear and star-shaped polystyrene and polybutadiene homo-polymers with varying molecular weights were anionically synthesised using both high-vacuum and inert atmosphere techniques. Furthermore, differently entangled solutions of linear and star-shaped polystyrenes in di-sec-octyl phthalate (DOP) were prepared. The several linear polystyrene solutions were measured under large amplitude oscillatory shear (LAOS) conditions and the non-linear torque response was analysed in the Fourier space. Experimental results were compared with numerical predictions performed by Dr. B. Debbaut using a multi-mode differential viscoelastic fluid model obeying the Giesekus constitutive equation. Apart from the analysis of the relative intensities of the harmonics, a detailed examination of the phase information content was developed. Further on, FT-rheology allowed to distinguish polystyrene melts and solutions due to their different topologies where other rheological measurements failed. Significant differences occurred under LAOS conditions as particularly reflected in the phase difference of the third harmonic, ¶3, which could be related to shear thinning and shear thickening behaviour.
Resumo:
In dieser Arbeit werden vier unterschiedliche, stark korrelierte, fermionische Mehrbandsysteme untersucht. Es handelt sich dabei um ein Mehrstörstellen-Anderson-Modell, zwei Hubbard-Modelle sowie ein Mehrbandsystem, wie es sich aus einer ab initio-Beschreibung für ein korreliertes Halbmetall ergibt.rnrnDie Betrachtung des Mehrstörstellen-Anderson-Modells konzentriert sich auf die Untersuchung des Einflusses der Austauschwechselwirkung und der nicht-lokalen Korrelationen zwischen zwei Störstellen in einem einfach-kubischen Gitter. Das zentrale Resultat ist die Abstandsabhängigkeit der Korrelationen der Störstellenelektronen, welche stark von der Gitterdimension und der relativen Position der Störstellen abhängen. Bemerkenswert ist hier die lange Reichweite der Korrelationen in der Diagonalrichtung des Gitters. Außerdem ergibt sich, dass eine antiferromagnetische Austauschwechselwirkung ein Singulett zwischen den Störstellenelektronen gegenüber den Kondo-Singuletts der einzelnen Störstellen favorisiert und so den Kondo-Effekt der einzelnen Störstellen behindert.rnrnEin Zweiband-Hubbard-Modell, das Jz-Modell, wird im Hinblick auf seine Mott-Phasen in Abhängigkeit von Dotierung und Kristallfeldaufspaltung auf dem Bethe-Gitter untersucht. Die Entartung der Bänder ist durch eine unterschiedliche Bandbreite aufgehoben. Wichtigstes Ergebnis sind die Phasendiagramme in Bezug auf Wechselwirkung, Gesamtfüllung und Kristallfeldparameter. Im Vergleich zu Einbandmodellen kommen im Jz-Modell sogenannte orbital-selektive Mott-Phasen hinzu, die, abhängig von Wechselwirkung, Gesamtfüllung und Kristallfeldparameter, einerseits metallischen und andererseits isolierenden Charakter haben. Ein neuer Aspekt ergibt sich durch den Kristallfeldparameter, der die ionischen Einteilchenniveaus relativ zueinander verschiebt, und für bestimmte Werte eine orbital-selektive Mott-Phase des breiten Bands ermöglicht. Im Vergleich mit analytischen Näherungslösungen und Einbandmodellen lassen sich generische Vielteilchen- und Korrelationseffekte von typischen Mehrband- und Einteilcheneffekten differenzieren.rnrnDas zweite untersuchte Hubbard-Modell beschreibt eine magneto-optische Falle mit einer endlichen Anzahl Gitterplätze, in welcher fermionische Atome platziert sind. Es wird eine z-antiferromagnetische Phase unter Berücksichtigung nicht-lokaler Vielteilchenkorrelationen erhalten, und dabei werden bekannte Ergebnisse einer effektiven Einteilchenbeschreibung verbessert.rnrnDas korrelierte Halbmetall wird im Rahmen einer Mehrbandrechnung im Hinblick auf Korrelationseffekte untersucht. Ausgangspunkt ist eine ab initio-Beschreibung durch die Dichtefunktionaltheorie (DFT), welche dann durch die Hinzunahme lokaler Korrelationen ergänzt wird. Die Vielteilcheneffekte werden an Hand einer einfachen Wechselwirkungsnäherung verdeutlicht, und für ein Wechselwirkungsmodell in sphärischer Symmetrie präzisiert. Es ergibt sich nur eine schwache Quasiteilchenrenormierung. Besonders für röntgenspektroskopische Experimente wird eine gute Übereinstimmung erzielt.rnrnDie numerischen Ergebnisse für das Jz-Modell basieren auf Quanten-Monte-Carlo-Simulationen im Rahmen der dynamischen Molekularfeldtheorie (DMFT). Für alle anderen Systeme wird ein Mehrband-Algorithmus entwickelt und implementiert, welcher explizit nicht-diagonale Mehrbandprozesse berücksichtigt.rnrn