977 resultados para Analogue circuits


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We extend in this paper some previous results concerning the differential-algebraic index of hybrid models of electrical and electronic circuits. Specifically, we present a comprehensive index characterization which holds without passivity requirements, in contrast to previous approaches, and which applies to nonlinear circuits composed of uncoupled, one-port devices. The index conditions, which are stated in terms of the forest structure of certain digraph minors, do not depend on the specific tree chosen in the formulation of the hybrid equations. Additionally, we show how to include memristors in hybrid circuit models; in this direction, we extend the index analysis to circuits including active memristors, which have been recently used in the design of nonlinear oscillators and chaotic circuits. We also discuss the extension of these results to circuits with controlled sources, making our framework of interest in the analysis of circuits with transistors, amplifiers, and other multiterminal devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nowadays integrated circuit reliability is challenged by both variability and working conditions. Environmental radiation has become a major issue when ensuring the circuit correct behavior. The required radiation and later analysis performed to the circuit boards is both fund and time expensive. The lack of tools which support pre-manufacturing radiation hardness analysis hinders circuit designers tasks. This paper describes an extensively customizable simulation tool for the characterization of radiation effects on electronic systems. The proposed tool can produce an in depth analysis of a complete circuit in almost any kind of radiation environment in affordable computation times.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

N1-ethyl-N11-[(cyclopropyl)methyl]-4,8,-diazaundecane (CPENSpm) is a polyamine analogue that represents a new class of antitumor agents that demonstrate phenotype-specific cytotoxic activity. However, the precise mechanism of its selective cytotoxic activity is not known. CPENSpm treatment results in the superinduction of the polyamine catabolic enzyme spermidine/spermine N1-acetyltransferase (SSAT) in sensitive cell types and has been demonstrated to induce programmed cell death (PCD). The catalysis of polyamines by the SSAT/polyamine oxidase (PAO) pathway produces H2O2 as one product, suggesting that PCD produced by CPENSpm may be, in part, due to oxidative stress as a result of H2O2 production. In the sensitive human nonsmall cell line H157, the coaddition of catalase significantly reduces high molecular weight (HMW) DNA (≥50 kb) and nuclear fragmentation. Important to note, specific inhibition of PAO by N,N′-bis(2,3-butadienyl)-1,4-butane-diamine results in a significant reduction of the formation of HMW DNA and nuclear fragmentation. In contrast, the coaddition of catalase or PAO inhibitor has no effect on reducing HMW DNA fragmentation induced by N1-ethyl-N11-[(cycloheptyl)methyl]-4,8,-diazaundecane, which does not induce SSAT and does not deplete intracellular polyamines. These results strongly suggest that H2O2 production by PAO has a role in CPENSpm cytotoxicity in sensitive cells via PCD and demonstrate a potential basis for differential sensitivity to this promising new class of antineoplastic agents. Furthermore, the data suggest a general mechanism by which, under certain stimuli, cells can commit suicide through catabolism of the ubiquitous intracellular polyamines.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hypothalamic neuropeptide Y (NPY) is thought to be important in the regulation of feeding and also in the release of Adrenocorticotrophic hormone (ACTH). Intracerebroventricular administration of NPY to male rats significantly increased plasma ACTH 10 min after injection and stimulated 2-h food intake. A series of analogues of NPY that have a greatly reduced affinity for the Y1 [human pancreatic polypeptide (human PP), NPY(3–36)], the Y2 ([Pro34]NPY, human PP), the Y3 (peptide YY), and the Y6 (human PP) receptor, all markedly stimulated ACTH release. Rat PP, which binds with high affinity to the Y4 receptor, was unable to stimulate ACTH release. A novel analogue fragment [Pro34]NPY(13–36) was synthesized as a ligand with low Y1 and Y2 receptor affinity. Interestingly, neither [Pro34]NPY(13–36) nor the selective Y5 receptor agonist [d-Trp32]NPY stimulated food intake, whereas both significantly increased plasma ACTH. Thus the hypothalamic NPY receptor mediating increases in plasma ACTH has a fragment activation profile unlike the Y1–Y4 or Y6 receptors and appears distinct from the NPY receptor controlling food intake.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conjugation of gonadotropin-releasing hormone (GnRH) analogues GnRH-III, MI-1544, and MI-1892 through lysyl side chains and a tetrapeptide spacer, Gly-Phe-Leu-Gly (X) to a copolymer, poly(N-vinylpyrrolidone-co-maleic acid) (P) caused increased antiproliferative activity toward MCF-7 and MDA-MB-231 breast, PC3 and LNCaP prostate, and Ishikawa endometrial cancer cell lines in culture and against tumor development by xenografts of the breast cancer cells in immunodeficient mice. MCF-7 cells treated with P-X-1544 and P-X-1892 displayed characteristic signs of apoptosis, including vacuoles in the cytoplasm, rounding up, apoptotic bodies, bleb formation, and DNA fragmentation. Conjugates, but not free peptides, inhibited cdc25 phosphatase and caused accumulation of Ishikawa and PC3 cells in the G2/M phase of the cell cycle after 24 h at lower doses and in the G1 and G2 phases after 48 h. Since P-X-peptides appear to be internalized, the increased cytotoxicity of the conjugates is attributed to protection of peptides from proteolysis, enhanced interaction of the peptides with the GnRH receptors, and/or internalization of P-X-peptide receptor complexes so that P can exert toxic effects inside, possibly by inhibiting enzymes involved in the cell cycle. The additional specificity of P-X-peptides compared with free peptides for direct antiproliferative effects on the cancer cells but not for interactions in the pituitary indicates the therapeutic potential of the conjugates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

NMR analysis and molecular dynamics simulations of d(GGTAATTACC)2 and its complex with a tetrahydropyrimidinium analogue of Hoechst 33258 suggest that DNA minor groove recognition in solution involves a combination of conformational selection and induced fit, rather than binding to a preorganised site. Analysis of structural fluctuations in the bound and unbound states suggests that the degree of induced fit observed is primarily a consequence of optimising van der Waals contacts with the walls of the minor groove resulting in groove narrowing through: (i) changes in base step parameters, including increased helical twist and propeller twist; (ii) changes to the sugar–phosphate backbone conformation to engulf the bound ligand; (iii) suppression of bending modes at the TpA steps. In contrast, the geometrical arrangement of hydrogen bond acceptors on the groove floor appears to be relatively insensitive to DNA conformation (helical twist and propeller twist). We suggest that effective recognition of DNA sequences (in this case an A tract structure) appears to depend to a significant extent on the sequence being flexible enough to be able to adopt the geometrically optimal conformation compatible with the various binding interactions, rather than involving ‘lock and key’ recognition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cholinergic transmission at muscarinic acetylcholine receptors (mAChR) has been implicated in higher brain functions such as learning and memory, and loss of synapses may contribute to the symptoms of Alzheimer disease. A heterogeneous family of five genetically distinct mAChR subtypes differentially modulate a variety of intracellular signaling systems as well as the processing of key molecules involved in the pathology of the disease. Although many muscarinic effects have been identified in memory circuits, including a diversity of pre- and post-synaptic actions in hippocampus, the identities of the molecular subtypes responsible for any given function remain elusive. All five mAChR genes are expressed in hippocampus, and subtype-specific antibodies have enabled identification, quantification, and localization of the encoded proteins. The m1, m2, and m4 mAChR proteins are most abundant in forebrain regions and they have distinct cellular and subcellular localizations suggestive of various pre- and postsynaptic functions in cholinergic circuits. The subtypes are also differentially altered in postmortem brain samples from Alzheimer disease cases. Further understanding of the molecular pharmacology of failing synapses in Alzheimer disease, together with the development of new subtype-selective drugs, may provide more specific and effective treatments for the disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Evidence accumulated over more than 45 years has indicated that environmental stimuli can induce craving for drugs of abuse in individuals who have addictive disorders. However, the brain mechanisms that subserve such craving have not been elucidated. Here a positron emission tomographic study shows increased glucose metabolism in cortical and limbic regions implicated in several forms of memory when human volunteers who abuse cocaine are exposed to drug-related stimuli. Correlations of metabolic increases in the dorsolateral prefrontal cortex, medial temporal lobe (amygdala), and cerebellum with self-reports of craving suggest that a distributed neural network, which integrates emotional and cognitive aspects of memory, links environmental cues with cocaine craving.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As an essential nutrient and a potential toxin, iron poses an exquisite regulatory problem in biology and medicine. At the cellular level, the basic molecular framework for the regulation of iron uptake, storage, and utilization has been defined. Two cytoplasmic RNA-binding proteins, iron-regulatory protein-1 (IRP-1) and IRP-2, respond to changes in cellular iron availability and coordinate the expression of mRNAs that harbor IRP-binding sites, iron-responsive elements (IREs). Nitric oxide (NO) and oxidative stress in the form of H2O2 also signal to IRPs and thereby influence cellular iron metabolism. The recent discovery of two IRE-regulated mRNAs encoding enzymes of the mitochondrial citric acid cycle may represent the beginnings of elucidating regulatory coupling between iron and energy metabolism. In addition to providing insights into the regulation of iron metabolism and its connections with other cellular pathways, the IRE/IRP system has emerged as a prime example for the understanding of translational regulation and mRNA stability control. Finally, IRP-1 has highlighted an unexpected role for iron sulfur clusters as post-translational regulatory switches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Substance P (SP) is a neuropeptide that mediates multiple physiological responses including transmission of painful stimuli and inflammation via an interaction with a receptor of known primary sequence. To identify the regions of the SP receptor, also termed the NK-1 receptor, involved in peptide recognition, we are using analogues of SP containing the photoreactive amino acid p-benzoyl-L-phenylalanine (Bpa). In the present study, we used radioiodinated Bpa8-SP to covalently label with high efficiency the rat SP receptor expressed in a transfected mammalian cell line. To identify the amino acid residue that serves as the site of covalent attachment, a membrane preparation of labeled receptor was subjected to partial enzymatic cleavage by trypsin. A major digestion product of 22 kDa was identified. Upon reduction with 2-mercaptoethanol the mass of this product decreased to 14 kDa. The 22-kDa tryptic fragment was purified in excellent yield by preparative SDS/PAGE under nonreducing conditions. Subcleavage with Staphylococcus aureus V8 protease and endoproteinase ArgC yielded fragments of 8.2 and 9.0 kDa, respectively. Upon reductive cleavage, the V8 protease fragment decreased to 3.0 kDa while the endoproteinase ArgC fragment decreased to 3.2 kDa. Taking into consideration enzyme specificity, molecular size, determination of the presence or absence of N-glycosylation sites, and recognition by antibodies to specific sequences of the SP receptor, the V8 protease fragment is Thr-173 to Glu-183, while the endoproteinase ArgC fragment is Val-178 to Arg-190. These two fragments share the common sequence Val-Val-Cys-Met-Ile-Glu (residues 178-183). The site of covalent attachment of radioiodinated Bpa8-SP is thus restricted to a residue within this overlap sequence. The data presented here also establish that the cysteine residue in this sequence Cys-180, which is positioned in the middle of the second extracellular loop, participates in a disulfide bond that links the first and second extracellular loops of the receptor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polyamide ("peptide") nucleic acids (PNAs) are molecules with antigene and antisense effects that may prove to be effective neuropharmaceuticals if these molecules are enabled to undergo transport through the brain capillary endothelial wall, which makes up the blood-brain barrier in vivo. The model PNA used in the present studies is an 18-mer that is antisense to the rev gene of human immunodeficiency virus type 1 and is biotinylated at the amino terminus and iodinated at a tyrosine residue near the carboxyl terminus. The biotinylated PNA was linked to a conjugate of streptavidin (SA) and the OX26 murine monoclonal antibody to the rat transferrin receptor. The blood-brain barrier is endowed with high transferrin receptor concentrations, enabling the OX26-SA conjugate to deliver the biotinylated PNA to the brain. Although the brain uptake of the free PNA was negligible following intravenous administration, the brain uptake of the PNA was increased at least 28-fold when the PNA was bound to the OX26-SA vector. The brain uptake of the PNA bound to the OX26-SA vector was 0.1% of the injected dose per gram of brain at 60 min after an intravenous injection, approximating the brain uptake of intravenously injected morphine. The PNA bound to the OX26-SA vector retained the ability to bind to synthetic rev mRNA as shown by RNase protection assays. In summary, the present studies show that while the transport of PNAs across the blood-brain barrier is negligible, delivery of these potential neuropharmaceutical drugs to the brain may be achieved by coupling them to vector-mediated peptide-drug delivery systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A folate analogue, 1843U89 (U89), with potential as a chemotherapeutic agent due to its potent and specific inhibition of thymidylate synthase (TS; EC 2.1.1.45), greatly enhances not only the binding of 5-fluoro-2'-deoxyuridine 5'-monophosphate (FdUMP) and dUMP to Escherichia coli TS but also that of dGMP, GMP, dIMP, and IMP. Guanine nucleotide binding was first detected by CD analysis, which revealed a unique spectrum for the TS-dGMP-U89 ternary complex. The quantitative binding of dGMP relative to GMP, FdUMP, and dUMP was determined in the presence and absence of U89 by ultrafiltration analysis, which revealed that although the binding of GMP and dGMP could not be detected in the absence of U89 both were bound in its presence. The Kd for dGMP was about the same as that for dUMP and FdUMP, with binding of the latter two nucleotides being increased by two orders of magnitude by U89. An explanation for the binding of dGMP was provided by x-ray diffraction studies that revealed an extensive stacking interaction between the guanine of dGMP and the benzoquinazoline ring of U89 and hydrogen bonds similar to those involved in dUMP binding. In addition, binding energy was provided through a water molecule that formed hydrogen bonds to both N7 of dGMP and the hydroxyl of Tyr-94. Accommodation of the larger dGMP molecule was accomplished through a distortion of the active site and a shift of the deoxyribose moiety to a new position. These rearrangements also enabled the binding of GMP to occur by creating a pocket for the ribose 2' hydroxyl group, overcoming the normal TS discrimination against nucleotides containing the 2' hydroxyl.