952 resultados para Ammonia - Volatilization


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ocean acidification (OA), caused by the dissolution of increasing concentrations of atmospheric carbon dioxide (CO2) in seawater, is projected to cause significant changes to marine ecology and biogeochemistry. Potential impacts on the microbially driven cycling of nitrogen are of particular concern. Specifically, under seawater pH levels approximating future OA scenarios, rates of ammonia oxidation (the rate-limiting first step of the nitrification pathway) have been shown to dramatically decrease in seawater, but not in underlying sediments. However, no prior study has considered the interactive effects of microbial ammonia oxidation and macrofaunal bioturbation activity, which can enhance nitrogen transformation rates. Using experimental mesocosms, we investigated the responses to OA of ammonia oxidizing microorganisms inhabiting surface sediments and sediments within burrow walls of the mud shrimp Upogebia deltaura. Seawater was acidified to one of four target pH values (pHT 7.90, 7.70, 7.35 and 6.80) in comparison with a control (pHT 8.10). At pHT 8.10, ammonia oxidation rates in burrow wall sediments were, on average, fivefold greater than in surface sediments. However, at all acidified pH values (pH < = 7.90), ammonia oxidation rates in burrow sediments were significantly inhibited (by 79-97%; p < 0.01), whereas rates in surface sediments were unaffected. Both bacterial and archaeal abundances increased significantly as pHT declined; by contrast, relative abundances of bacterial and archaeal ammonia oxidation (amoA) genes did not vary. This research suggests that OA could cause substantial reductions in total benthic ammonia oxidation rates in coastal bioturbated sediments, leading to corresponding changes in coupled nitrogen cycling between the benthic and pelagic realms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Calcareous foraminifera are well known for their CaCO3 shells. Yet, CaCO3 precipitation acidifies the calcifying fluid. Calcification without pH regulation would therefore rapidly create a negative feedback for CaCO3 precipitation. In unicellular organisms, like foraminifera, an effective mechanism to counteract this acidification could be the externalization of H+ from the site of calcification. In this study we show that a benthic symbiont-free foraminifer Ammonia sp. actively decreases pH within its extracellular microenvironment only while precipitating calcite. During chamber formation events the strongest pH decreases occurred in the vicinity of a newly forming chamber (range of gradient about 100 µm) with a recorded minimum of 6.31 (< 10 µm from the shell) and a maximum duration of 7 h. The acidification was actively regulated by the foraminifera and correlated with shell diameters, indicating that the amount of protons removed during calcification is directly related to the volume of calcite precipitated. The here presented findings imply that H+ expulsion as a result of calcification may be a wider strategy for maintaining pH homeostasis in unicellular calcifying organisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated the effect of the calcium concentration in seawater and thereby the calcite saturation state (omega) on the magnesium and strontium incorporation into benthic foraminiferal calcite under laboratory conditions. For this purpose individuals of the shallow-water species Heterostegina depressa (precipitating high-Mg calcite, symbiont-bearing) and Ammonia tepida (low-Mg calcite, symbiont-barren) were cultured in media under a range of [Ca2+], but similar Mg/Ca ratios. Trace element/Ca ratios of newly formed calcite were analysed with Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) and normalized to the seawater elemental composition using the equation DTE=(TE/Cacalcite)/(TE/Caseawater). The culturing study shows that DMg of A. tepida significantly decreases with increasing omega at a gradient of -4.3x10-5 per omega unit. The DSr value of A. tepida does not change with omega, suggesting that fossil Sr/Ca in this species may be a potential tool to reconstruct past variations in seawater Sr/Ca. Conversely, DMg of H. depressa shows only a minor decrease with increasing omega, while DSr increases considerably with omega at a gradient of 0.009 per omega unit. The different responses to seawater chemistry of the two species may be explained by a difference in the calcification pathway that is, at the same time, responsible for the variation in the total Mg incorporation between the two species. Since the Mg/Ca ratio in H. depressa is 50-100 times higher than that of A. tepida, it is suggested that the latter exhibits a mechanism that decreases the Mg/Ca ratio of the calcification fluid, while the high-Mg calcite forming species may not have this physiological tool. If the dependency of Mg incorporation on seawater [Ca2+] is also valid for deep-sea benthic foraminifera typically used for paleostudies, the higher Ca concentrations in the past may potentially bias temperature reconstructions to a considerable degree. For instance, 25 Myr ago Mg/Ca ratios in A. tepida would have been 0.2 mmol/mol lower than today, due to the 1.5 times higher [Ca2+] of seawater, which in turn would lead to a temperature underestimation of more than 2 °C.