841 resultados para Allylic amine
Resumo:
The development associated with the research field involving crystalline inorganic lamellar titanium hydrogenphosphate, Ti(HPO4).H2O, synthesized as alpha or gamma forms, is directly linked to the huge number of reactions, that occur inside the free interlamellar space. Two distinguishable well-characterized features such as ion-exchange and intercalation reactions are explored here. From the interactive point of view, the acidic OH centres distributed on the lamella can interact with cations or with basic polar molecules to exchange or to intercalate them. These chemical reactions are normally followed by an expansion of the interlamellar space, proportional to the amount intercalated, reflecting in ion radii or organic molecule size lengths used in ion-exchange or insertion processes, respectively. The effectiveness of the exchange increased when the original matrix has the proton of OH group previously ion-exchanged by an alkaline or an alkylammonium cations. Monoalkyl-, dialkyl- and heterocyclic amines are focused in this revision as clear and elucidative examples of acid-base interactive processes, that come out inside of the well-formed infinite sequence of inorganic lamellar structure.
Resumo:
This work reports the synthesis and characterization of adducts of general formula MCl2.ngly, where M= Mn and Cu; n= 2 and 4, and gly= glycine. The manganese adducts were synthesized by dissolution of both, manganese chloride and glycine in water, whereas the copper adducts were obtained by using an alternative solid state synthesis approach. For all adducts, the obtained infrared data shows that the coordination involves the amine nitrogen atom, as well as an oxygen atom of the COO- group. The TG curves for the synthesized adducts exhibit only one mass loss step associated with the release of glycine molecules.
Resumo:
The gas-phase ion-molecule reactions of the Me3SiN(H)SiMe2+ ion, obtained by electron ionization from Me3SiN(H)SiMe3, have been studied in a Fourier transform ion cyclotron resonance spectrometer in order to understand the mechanistic details of an important chemical system presently used in film formation. This silyl cation has been observed to undergo addition reactions at electron rich centers to form stable adducts that may undergo further methane elimination in the case of alcohols and amines. The most important feature of these reactions is the fact that a metathesis type reaction can be observed in the presence of H2O, and other hydrogen labile substrates like alcohols, leading to the formation of the corresponding oxygen-containing ion, i.e. Me3SiOSiMe2+. For alcohols (ROH), facile formation of a tertiary product ion, presumably corresponding to an Me3Si-O-Si(Me)=O+-R structure with elimination of an amine reveals the strong tendency of these nitrogen-containing ions to undergo metathesis type reactions with oxygen containing substrates.
Resumo:
This work contains the theoretical simulation of the conformation of diphenyl-4-amine sodium sulphonate (DASNa) and correlates its geometry with conductivity, showing that the conductivity increases as the molecule becomes more planar. The solvent effect was also evaluated, using water and dimethylsulfoxide. Some properties, such as bond distance, vibration al frequency and effective charge were calculated. The utilization of diphenyl-4-amine sodium sulphonate (DASNa) as dopant of aniline was investigated in view of the HOMO-LUMO energy gap.
Resumo:
1,2-dichloro-4,5-dinitrobenzene (DCDNB) reacts with primary and secondary amines, in acetonitrile, at room temperature, to give a monosubstituted nitro product with a yield of 85 to 95%. The chloro-nitro-disubstituted product is formed with excess amine under reflux. Piperidine, pyrroline, dimethylamine and methylamine were the most reactive reagents in both mono- and disubstitution.
Resumo:
Proton binding properties of humic and fulvic acids were studied by potentiometric titration. Carboxylic groups were the predominant ionizable sites in comparison to phenolic and amine groups. Total acidity of fulvic acid was 12 x 10-3 mol g-1, a number significantly higher than that obtained for humic acid (5.2 x 10-3 mol g-1). Copper ion binding was evaluated at pH 4, 5 and 6 by potentiometric titration with an ion selective electrode for Cu(II). Differential stability constants and complexation capacities were systematically higher for humic acid, despite its lower number of ionizable sites in comparison with fulvic acid.
Resumo:
Antimycobacterial and cytotoxicity activity of synthetic and natural compounds. Secondary metabolites from Curvularia eragrostidis and Drechslera dematioidea, Clusia sp. floral resin, alkaloids from Pilocarpus alatus, salicylideneanilines, piperidine amides, the amine 1-cinnamylpiperazine and chiral pyridinium salts were assayed on Mycobacterium tuberculosis H37Rv. N-(salicylidene)-2-hydroxyaniline was the most effective compound with a minimal inhibitory concentration (MIC) of 8 µmol/L. Dihydrocurvularin was moderately effective with a MIC of 40 µmol/L. Clusia sp. floral resin and a gallocatechin-epigallocatechin mixture showed MIC of 0.02 g/L and 38 µmol/L, respectively. The cytotoxicity was evaluated for N-(salicylidene)-2-hydroxyaniline, curvularin, dihydrocurvularin and Clusia sp. floral resin, and the selectivity indexes were > 125, 0.47, 0.75 and 5, respectively.
Resumo:
This review reports the application of inorganic and organic polymeric materials for cation removal by using nitrogenated basic centers. The data demonstrate the importance of the desired groups when free or immobilized on natural or synthesized inorganic polymers through silanol groups. Thus, the most studied silica gel is followed by natural crysotile and talc polymers, and the synthesized mesopore silicas, talc-like, silicic acids, phosphates and phyllosilicates. The organic natural biopolymeric chitin and cellulose were chemically modified to improve the availability of the amine groups or the reactivity with desirable molecules to enlarge the content of basic centers. The cation removal takes place at the solid/liquid interface and some interactive effects have their thermodynamic data determined.
Resumo:
Reduction of five substituted octalones employing lithium tri-sec-butylborohydride (L-selectride®) in THF and ethyl ether led to allylic alcohols with moderate diastereoselectivity. The stereoselectivity of addition of bulky hydrides showed to be different from most examples in the literature and was strongly influenced by substitution on the octalone ring.
Resumo:
In this work the potentiality of reductive-oxidative processes based on zero-valent iron was studied aiming the degradation of nitroaromatic compounds and the remediation of residues from the explosive industry. The reductive process was applied as a continuous treatment system, using steel-wool as zero-valent iron source. The process permitted an almost total degradation of nitrobenzene, nitrophenol, nitrotoluene, dinitrotoluene and trinitrotoluene, probably with generation of the respective amine-derivative. The yellow-water residue, containing soluble trinitrotoluene, was notably modified by the reductive process, a fact that permitted a substantial enhancement of its biodegradability. Furthermore, the subsequent photo-Fenton process allowed TOC removal of about 80%.
Resumo:
N-nitrosamines are carcinogenic compounds that have been found during the last three decades in a variety of consumer products, including cosmetic and personal care products, and their raw materials. These compounds are formed from amine precursors and nitrosating agents present in the formulations. This paper reviews the formation and occurrence of N-nitrosamines in cosmetic products, as well as presents considerations about analytical, toxicological and regulatory aspects.
Resumo:
A method employing chitosan as complexant agent in the removal of copper(II) ions generally present in the Brazilian cachaça samples is herein proposed. The efficiency of this method is attributed to its high capacity of metal cations adsorption, mainly due to presence of hydroxyl and amine groups that can serve as chelating sites. The removal of copper(II) ions from this alcoholic beverage was efficient employing either in column and batch system. The analysis were carried out employing the flame atomic absorption spectrometry and the remaining copper(II) concentrations in the treated cachaça were lower than LOD of FAAS technique.
Resumo:
WO3-ZrO2 catalysts promoted with Pt and Pd were tested as paraffin isomerization catalysts using n-hexane as model compound. Sulfur and amine poisoning and regeneration tests were used to assess the impact of the addition of Pt and Pd on the deactivation resistance and regenerability. Pt and PtPd catalysts were the most active for n-hexane isomerization. The low activity of the Pd catalyst was attributed to poor Pd metal properties when supported over WO3-ZrO2 and to a decrease of the number of BrQnsted acid sites. PtPd was the only catalyst capable of full regeneration after S poisoning. Amine poisoning completely supressed the isomerization activity and the original activity could only be restored by calcination and reduction.
Resumo:
Tämän työn tarkoituksena oli tutkia hiilidioksidin talteenottoon soveltuvan anioninvaihtohartsin valmistusmenetelmiä, kokeilla eri menetelmiä käytännössä ja tutkia sekä itse valmistettujen että valmiina saatujen hartsien adsorptiokykyä ja muita ominaisuuksia. Kemiallinen adsorptio amiiniryhmän omaavien hartsien avulla on yksi tapa sitoa hiilidioksidia ilmasta. Primäärinen amiiniryhmä sitoo hiilidioksidia parhaiten. Primäärisen amiiniryhmän omaava anioninvaihtohartsi voidaan valmistaa pohjapolymeeristä halogeenialkyloimalla ja aminoimalla, aminoalkyloimalla tai suoraan aminoimalla. Aminoalkylointi voidaan suorittaa erilaisilla reagensseilla ja katalyyteillä. Tässä työssä hartseja valmistettiin aminoimalla polymetyyliakrylaattidivinyylibentseenipohjaista polymeeriä etyylidiamiinilla ja propyylidiamiinilla. Lisäksi suoritettiin polystyreeni-divinyylibentseenipohjaisen polymeerin aminoalkylointi bis(ftaali-imidometyyli)eetterin avulla. Reaktio tehtiin kahdella eri katalyytillä; rikkitrioksidilla ja rautakloridilla. Aminoalkylointireaktioissa tarvittava eetteri piti ennen varsinaista reaktiota valmistaa N-hydroksymetyyliftaali-imidistä. Myös tämän reagenssin syntetisointia ftaali-imidistä kokeiltiin. Kaikki synteesit onnistuivat melko hyvin, paitsi aminoalkylointi rautakloridikatalyytillä. Hartsien valmistuksen lisäksi itse valmistettuja primäärisen amiiniryhmän omaavia hartseja sekä erilaisia amiiniryhmiä omaavia valmiita hartseja karakterisoitiin eri tavoin. Erityisesti haluttiin tutkia hiilidioksidin adsorptiokapasiteettia ja hartsien termistä kestävyyttä. Kaikista tutkituista hartseista lähimpänä haluttuja ominaisuuksia olivat kaksi kaupallista primäärisen amiiniryhmän omaavaa PS-DVBpohjaista makrohuokoista hartsia. Rakenteeltaan samanlainen itse valmistettu hartsi (rikkitrioksidikatalyytin läsnä ollessa aminoalkyloitu) oli myös ominaisuuksiltaan lupaava. Valmistusmenetelmää pitää kuitenkin tutkia ja kehittää lisää vielä parempien tulosten aikaansaamiseksi. Myös kaupallinen polyetyleeni-imiinirakenteen omaava silikapohjainen hartsi oli ominaisuuksiltaan hyvä.
Resumo:
In situ ethylene polymerizations were performed using bis(cyclopentadiene)titanium dichloride supported on polyethersulfone as catalyst. The bis(cyclopentadiene)titanium dichloride supported on polyethersulfone catalyst activity estimated by ethylene polymerization was 360 kgPE/molTi/h. During polymerization the fillers used were montmorillionite nanoclays having surface modifications with 35-45 wt% dimethyl dialkyl(14-18)amine (FA) and 25-30 wt% trimethyl stearyl ammonium (FB). These fillers were pretreated with methylaluminoxine (MAO; cocatalyst) for better dispersion onto the polymer matrix. The formation of polyethylene within the whole matrix was confirmed by FTIR studies. It was found that the nature of nanofiller did not have any remarkable effect on the melting characteristics of the polymer. TGA study indicates that nanoclay FB filled polyethylene has higher thermal stability than nanoclay FA filled polyethylene. The melting temperature of the obtained polyethylenes was 142 ºC, which corresponds to that synthesized by the polyether sulfone supported catalyst.