276 resultados para Algorithme vorace
Resumo:
Les techniques des directions d’arrivée (DOA) sont une voie prometteuse pour accroitre la capacité des systèmes et les services de télécommunications en permettant de mieux estimer le canal radio-mobile. Elles permettent aussi de suivre précisément des usagers cellulaires pour orienter les faisceaux d’antennes dans leur direction. S’inscrivant dans ce contexte, ce présent mémoire décrit étape par étape l’implémentation de l’algorithme de haut niveau MUSIC (MUltiple SIgnal Classification) sur une plateforme FPGA afin de déterminer en temps réel l’angle d’arrivée d’une ou des sources incidentes à un réseau d’antennes. Le concept du prototypage rapide des lois de commande (RCP) avec les outils de XilinxTM System generator (XSG) et du MBDK (Model Based Design Kit) de NutaqTM est le concept de développement utilisé. Ce concept se base sur une programmation de code haut niveau à travers des modèles, pour générer automatiquement un code de bas niveau. Une attention particulière est portée sur la méthode choisie pour résoudre le problème de la décomposition en valeurs et vecteurs propres de la matrice complexe de covariance par l’algorithme de Jacobi. L’architecture mise en place implémentant cette dernière dans le FPGA (Field Programmable Gate Array) est détaillée. Par ailleurs, il est prouvé que MUSIC ne peut effectuer une estimation intéressante de la position des sources sans une calibration préalable du réseau d’antennes. Ainsi, la technique de calibration par matrice G utilisée dans ce projet est présentée, en plus de son modèle d’implémentation. Enfin, les résultats expérimentaux du système mis à l’épreuve dans un environnement réel en présence d’une source puis de deux sources fortement corrélées sont illustrés et analysés.
Resumo:
Avec la disponibilité de capteurs fiables de teneur en eau exploitant la spectroscopie proche infrarouge (NIR pour near-infrared) et les outils chimiométriques, il est maintenant possible d’appliquer des stratégies de commande en ligne sur plusieurs procédés de séchage dans l’industrie pharmaceutique. Dans cet ouvrage, le séchage de granules pharmaceutiques avec un séchoir à lit fluidisé discontinu (FBD pour fluidized bed dryer) de taille pilote est étudié à l’aide d’un capteur d’humidité spectroscopique. Des modifications électriques sont d’abord effectuées sur le séchoir instrumenté afin d’acheminer les signaux mesurés et manipulés à un périphérique d’acquisition. La conception d’une interface homme-machine permet ensuite de contrôler directement le séchoir à l’aide d’un ordinateur portable. Par la suite, un algorithme de commande prédictive (NMPC pour nonlinear model predictive control), basée sur un modèle phénoménologique consolidé du FBD, est exécuté en boucle sur ce même ordinateur. L’objectif est d’atteindre une consigne précise de teneur en eau en fin de séchage tout en contraignant la température des particules ainsi qu’en diminuant le temps de lot. De plus, la consommation énergétique du FBD est explicitement incluse dans la fonction objectif du NMPC. En comparant à une technique d’opération typique en industrie (principalement en boucle ouverte), il est démontré que le temps de séchage et la consommation énergétique peuvent être efficacement gérés sur le procédé pilote tout en limitant plusieurs problèmes d’opération comme le sous-séchage, le surséchage ou le surchauffage des granules.
Resumo:
Dans un contexte de pression toujours plus grande sur les ressources naturelles, une gestion rationnelle des ressources hydriques s'impose. La principale difficulté de leur gestion provient du caractère aléatoire des apports en eau dans le système. Le sujet de cette recherche consiste à développer des méthodes d'optimisation stochastique capable de bien représenter les processus aléatoires. Le cas de Kemano, située en Colombie-Britannique (Canada), illustre les travaux de recherche. L'importante accumulation de neige sur les bassins versants engendre une hydrologie complexe, rendant la gestion du système délicate. La programmation dynamique stochastique est la méthode la plus utilisée pour déterminer la politique de gestion des réservoirs. Mais, son étude fait ressortir que cette méthode ne peut gérer que des modèles simplifiés des processus stochastiques, ne rendant pas compte des complexes corrélations spatio-temporelles des apports hydriques. Ainsi, la politique obtenue peut être de mauvaise qualité. Cette méthode est comparée avec la recherche directe de politique qui n'utilise pas de modèles pour représenter les processus stochastiques, mais évalue la politique sur des scénarios d'apports. Ainsi la recherche directe de politique se révèle globalement plus performante en prenant bien en considération la complexité des apports, mais est limitée par la forme prédéterminée de la politique. De plus, l'optimisation des paramètres en utilisant un algorithme évolutionnaire s'avère lente. La conception d'un algorithme de descente par gradient, combinée à une architecture "acteur-critique" appropriée, permet de réduire notablement le temps d'optimisation. Combinée à une fonction plus complexe employée pour la paramétrisation de la politique de gestion, la méthode permet d'obtenir une politique de qualité significativement supérieure à celle obtenue avec la programmation dynamique stochastique. Les travaux effectués dans le cadre de cette thèse ouvrent la voie à une application opérationnelle de la méthode de recherche directe de politique. L'évaluation en simulation devrait être appréciée des opérateurs en permettant une bonne représentation du système et des apports.
Resumo:
Il y a présentement de la demande dans plusieurs milieux cherchant à utiliser des robots afin d'accomplir des tâches complexes, par exemple l'industrie de la construction désire des travailleurs pouvant travailler 24/7 ou encore effectuer des operation de sauvetage dans des zones compromises et dangereuses pour l'humain. Dans ces situations, il devient très important de pouvoir transporter des charges dans des environnements encombrés. Bien que ces dernières années il y a eu quelques études destinées à la navigation de robots dans ce type d'environnements, seulement quelques-unes d'entre elles ont abordé le problème de robots pouvant naviguer en déplaçant un objet volumineux ou lourd. Ceci est particulièrement utile pour transporter des charges ayant de poids et de formes variables, sans avoir à modifier physiquement le robot. Un robot humanoïde est une des plateformes disponibles afin d'effectuer efficacement ce type de transport. Celui-ci a, entre autres, l'avantage d'avoir des bras et ils peuvent donc les utiliser afin de manipuler précisément les objets à transporter. Dans ce mémoire de maîtrise, deux différentes techniques sont présentées. Dans la première partie, nous présentons un système inspiré par l'utilisation répandue de chariots de fortune par les humains. Celle-ci répond au problème d'un robot humanoïde naviguant dans un environnement encombré tout en déplaçant une charge lourde qui se trouve sur un chariot de fortune. Nous présentons un système de navigation complet, de la construction incrémentale d'une carte de l'environnement et du calcul des trajectoires sans collision à la commande pour exécuter ces trajectoires. Les principaux points présentés sont : 1) le contrôle de tout le corps permettant au robot humanoïde d'utiliser ses mains et ses bras pour contrôler les mouvements du système à chariot (par exemple, lors de virages serrés) ; 2) une approche sans capteur pour automatiquement sélectionner le jeu approprié de primitives en fonction du poids de la charge ; 3) un algorithme de planification de mouvement qui génère une trajectoire sans collisions en utilisant le jeu de primitive approprié et la carte construite de l'environnement ; 4) une technique de filtrage efficace permettant d'ignorer le chariot et le poids situés dans le champ de vue du robot tout en améliorant les performances générales des algorithmes de SLAM (Simultaneous Localization and Mapping) défini ; et 5) un processus continu et cohérent d'odométrie formés en fusionnant les informations visuelles et celles de l'odométrie du robot. Finalement, nous présentons des expériences menées sur un robot Nao, équipé d'un capteur RGB-D monté sur sa tête, poussant un chariot avec différentes masses. Nos expériences montrent que la charge utile peut être significativement augmentée sans changer physiquement le robot, et donc qu'il est possible d'augmenter la capacité du robot humanoïde dans des situations réelles. Dans la seconde partie, nous abordons le problème de faire naviguer deux robots humanoïdes dans un environnement encombré tout en transportant un très grand objet qui ne peut tout simplement pas être déplacé par un seul robot. Dans cette partie, plusieurs algorithmes et concepts présentés dans la partie précédente sont réutilisés et modifiés afin de convenir à un système comportant deux robot humanoides. Entre autres, nous avons un algorithme de planification de mouvement multi-robots utilisant un espace d'états à faible dimension afin de trouver une trajectoire sans obstacle en utilisant la carte construite de l'environnement, ainsi qu'un contrôle en temps réel efficace de tout le corps pour contrôler les mouvements du système robot-objet-robot en boucle fermée. Aussi, plusieurs systèmes ont été ajoutés, tels que la synchronisation utilisant le décalage relatif des robots, la projection des robots sur la base de leur position des mains ainsi que l'erreur de rétroaction visuelle calculée à partir de la caméra frontale du robot. Encore une fois, nous présentons des expériences faites sur des robots Nao équipés de capteurs RGB-D montés sur leurs têtes, se déplaçant avec un objet tout en contournant d'obstacles. Nos expériences montrent qu'un objet de taille non négligeable peut être transporté sans changer physiquement le robot.
Resumo:
Ce projet porte, dans un souci d’efficacité énergétique, sur la récupération d’énergie des rejets thermiques à basse température. Une analyse d’optimisation des technologies dans le but d’obtenir un système de revalorisation de chaleur rentable fait objet de cette recherche. Le but sera de soutirer la chaleur des rejets thermiques et de la réappliquer à un procédé industriel. Réduire la consommation énergétique d’une usine entre habituellement en conflit avec l’investissement requis pour les équipements de revalorisation de chaleur. Ce projet de maitrise porte sur l’application d’optimisations multiobjectives par algorithme génétique (GA) pour faciliter le design en retrofit des systèmes de revalorisation de chaleur industrielle. L’originalité de cette approche consiste à l’emploi du «fast non-dominant sorting genetic algorithm» ou NSGA-II dans le but de trouver les solutions optimales entre la valeur capitale et les pertes exergétiques des réseaux d’échangeurs de chaleur et de pompes à chaleur. Identifier les solutions optimales entre le coût et l’efficacité exergétique peut ensuite aider dans le processus de sélection d’un design approprié en considérant les coûts énergétiques. Afin de tester cette approche, une étude de cas est proposée pour la récupération de chaleur dans une usine de pâte et papier. Ceci inclut l’intégration d’échangeur de chaleur Shell&tube, d’échangeur à contact direct et de pompe à chaleur au réseau thermique existant. Pour l’étude de cas, le projet en collaboration avec Cascades est constitué de deux étapes, soit de ciblage et d’optimisation de solutions de retrofit du réseau d’échangeur de chaleur de l’usine de tissus Cascades à Kinsley Falls. L’étape de ciblage, basée sur la méthode d’analyse du pincement, permet d’identifier et de sélectionner les modifications de topologie du réseau d’échangeurs existant en y ajoutant de nouveaux équipements. Les scénarios résultants passent ensuite à l’étape d’optimisation où les modèles mathématiques pour chaque nouvel équipement sont optimisés afin de produire une courbe d’échange optimal entre le critère économique et exergétique. Pourquoi doubler l’analyse économique d’un critère d’exergie? D’abord, parce que les modèles économiques sont par définition de nature imprécise. Coupler les résultats des modèles économiques avec un critère exergétique permet d’identifier des solutions de retrofit plus efficaces sans trop s’éloigner d’un optimum économique. Ensuite, le rendement exergétique permet d’identifier les designs utilisant l’énergie de haute qualité, telle que l’électricité ou la vapeur, de façon plus efficace lorsque des sources d’énergie de basse qualité, telles que les effluents thermiques, sont disponibles. Ainsi en choisissant un design qui détruit moins d’exergie, il demandera un coût énergétique moindre. Les résultats de l’étude de cas publiés dans l’article montrent une possibilité de réduction des coûts en demande de vapeur de 89% tout en réduisant la destruction d’exergie de 82%. Dans certains cas de retrofit, la solution la plus justifiable économiquement est également très proche de la solution à destruction d’exergie minimale. L’analyse du réseau d’échangeurs et l’amélioration de son rendement exergétique permettront de justifier l’intégration de ces systèmes dans l’usine. Les diverses options pourront ensuite être considérées par Cascades pour leurs faisabilités technologiques et économiques sachant qu’elles ont été optimisées.
Resumo:
La ventilation liquidienne totale (VLT) consiste à remplir les poumons d'un liquide perfluorocarbone (PFC). Un respirateur liquidien assure la ventilation par un renouvellement cyclique de volume courant de PFC oxygéné et à température contrôlée. Ayant une capacité thermique volumique 1665 fois plus élevée que l'air, le poumon rempli de PFC devient un échangeur de chaleur performant avec la circulation pulmonaire. La température du PFC inspiré permet ainsi de contrôler la température artérielle, et par le fait même, le refroidissement des organes et des tissus. Des résultats récents d'expérimentations animales sur petits animaux ont démontré que le refroidissement ultra-rapide par VLT hypothermisante (VLTh) avait d'importants effets neuroprotecteurs et cardioprotecteurs. Induire rapidement et efficacement une hypothermie chez un patient par VLTh est une technique émergente qui suscite de grands espoirs thérapeutiques. Par contre, aucun dispositif approuvé pour la clinique n'est disponible et aucun résultat de VLTh sur humain n'est encore disponible. Le problème se situe dans le fait de contrôler la température du PFC inspiré de façon optimale pour induire une hypothermie chez l'humain tout en s'assurant que la température cardiaque reste supérieure à 30 °C pour éviter tout risque d'arythmie. Cette thèse présente le développement d'un modèle thermique paramétrique d'un sujet en VLTh complètement lié à la physiologie. Aux fins de validation du modèle sur des ovins pédiatriques et adultes, le prototype de respirateur liquidien Inolivent pour nouveau-né a dû être reconçu et adapté pour ventiler de plus gros animaux. Pour arriver à contrôler de façon optimale la température du PFC inspiré, un algorithme de commande optimale sous-contraintes a été développé. Après la validation du modèle thermique du nouveau-né à l'adulte par expérimentations animales, celui-ci a été projeté à l'humain. Afin de réduire le temps de calcul, un passage du modèle thermique en temps continu vers un modèle discret cycle-par-cycle a été effectué. À l'aide de la commande optimale et du développement numérique d'un profil de ventilation liquidienne chez des patients humains, des simulations d'induction d'hypothermie par VLTh ont pu être réalisées. La validation expérimentale du modèle thermique sur ovins nouveau-nés (5 kg), juvéniles (22 kg) et adultes (61 kg) a montré que celui-ci permettait de prédire les températures artérielles systémiques, du retour veineux et rectales. La projection à l'humain a permis de démontrer qu'il est possible de contrôler la température du PFC de façon optimale en boucle ouverte si le débit cardiaque et le volume mort thermique sont connus. S'ils ne peuvent être mesurés, la commande optimale pour le pire cas peut être calculée rendant l'induction d'hypothermie par VLTh sécuritaire pour tous les patients, mais diminuant quelque peu les vitesses de refroidissement.