419 resultados para Aldehydes


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Solid-state compounds with a general formula of LnL3· nH2O, where Ln stands for lighter trivalent lanthanides (lanthanum to samarium), L is 2-methoxybenzylidenepyruvate and n=1.5, 2, 2, 1.5 and 2, respectively, have been synthesized. On heating these compounds are decompose in two or three steps. They lose their hydration water in the first step and the thermal decomposition of the anhydrous compounds occurs with the formation of the respective oxide, CeO2, Pr6O11 and Ln 2O3 (Ln=La, Nd, Sm) as final residue. The dehydration enthalpies found for these compounds (La to Sm) were: 222.7, 163.6, 497.7, 513.9 and 715.4 kJ mol-1, respectively. © 2005 Akadémiai Kiadó, Budapest.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The promotion of good indoor air quality in schools is of particular public concern for two main reasons: (1) school-age children spend at least 30% of their time inside classrooms and (2) indoor air quality in urban areas is substantially influenced by the outdoor pollutants, exposing tenants to potentially toxic substances. Two schools in Curitiba, Brazil, were selected to characterize the gaseous compounds indoor and outdoor of the classrooms. The concentrations of benzene, toluene, ethylbenzene, and the isomers xylenes (BTEX); NO2; SO2; O3; acetic acid (HAc); and formic acid (HFor) were assessed using passive diffusion tubes. BTEX were analyzed by gas chromatography-ion trap mass spectrometry and other collected gasses by ion chromatography. The concentration of NO2 varied between 9.5 and 23 μg m-3, whereas SO2 showed an interval from 0.1 to 4.8 μg m-3. Within the schools, BTEX concentrations were predominant. Formic and acetic acids inside the classrooms revealed intermediate concentrations of 1.5 μg m-3 and 1.2 μg m-3, respectively. © Springer Science + Business Media B.V. 2009.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This research aimed at studying the oxidation process, to verify the effectiveness of coliform inactivation and to evaluate the formation of ozonation disinfection byproducts (DBP) in anoxic sanitary wastewater treated with ozone/hydrogen peroxide applied at doses of 2.6 mg O3 L-1 and 2.0 mg H2O2 L-1 with contact time of 10 min and 8.1 mg O3 L-1 and 8.0 mg H2O2 L-1 with contact time of 20 min. The mean chemical oxygen demand (COD) reductions were 7.50 and 9.40% for applied dosages of 2.5-2.8 and 6.4-9.4 mg O3 L-1 + 2.0 and 8.0 mg H2O2.L-1, respectively. The Escherichia coli (E. coli) inactivation range was 2.98-4.04 log10 and the total coliform inactivation range was 2.77-4.01 log10. The aldehydes investigated were formaldehyde, acetaldehyde, glyoxal and methylglyoxal. It was observed only the formation of acetaldehyde that ranged 5.53 to 29.68 μg L-1.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Currently, there is worldwide interest in the technological use of agro-industrial residues as a renewable source of food and biofuels. Lignocellulosic materials (LCMs) are a rich source of cellulose and hemicellulose. Hemicellulose is rich in xylan, a polysaccharide used to develop technology for producing alcohol, xylose, xylitol and xylo-oligosaccharides (XOSs). The XOSs are unusual oligosaccharides whose main constituent is xylose linked by β 1-4 bonds. The XOS applications described in this paper highlight that they are considered soluble dietary fibers that have prebiotic activity, favoring the improvement of bowel functions and immune function and having antimicrobial and other health benefits. These effects open a new perspective on potential applications for animal production and human consumption. The raw materials that are rich in hemicellulose include sugar cane bagasse, corncobs, rice husks, olive pits, barley straw, tobacco stalk, cotton stalk, sunflower stalk and wheat straw. The XOS-yielding treatments that have been studied include acid hydrolysis, alkaline hydrolysis, auto-hydrolysis and enzymatic hydrolysis, but the breaking of bonds present in these compounds is relatively difficult and costly, thus limiting the production of XOS. To obviate this limitation, a thorough evaluation of the most convenient methods and the opportunities for innovation in this area is needed. Another challenge is the screening and taxonomy of microorganisms that produce the xylanolytic complex and enzymes and reaction mechanisms involved. Among the standing out microorganisms involved in lignocellulose degradation are Trichoderma harzianum, Cellulosimicrobium cellulans, Penicillium janczewskii, Penicillium echinulatu, Trichoderma reesei and Aspergillus awamori. The enzyme complex predominantly comprises endoxylanase and enzymes that remove hemicellulose side groups such as the acetyl group. The complex has low β-xylosidase activities because β-xylosidase stimulates the production of xylose instead of XOS; xylose, in turn, inhibits the enzymes that produce XOS. The enzymatic conversion of xylan in XOS is the preferred route for the food industries because of problems associated with chemical technologies (e.g., acid hydrolysis) due to the release of toxic and undesired products, such as furfural. The improvement of the bioprocess for XOS production and its benefits for several applications are discussed in this study. © 2012 Elsevier Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Ciência e Tecnologia de Materiais - FC

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vários metabólitos produzidos por plantas apresentam atividade herbicida. Essa característica tem levado à possibilidade de utilizar essas substâncias como herbicidas mais integrados às atuais exigências da sociedade. Entretanto, a obtenção dessas moléculas apresenta várias limitações, sendo, dessa forma, a síntese uma alternativa. Este trabalho teve por objetivo determinar as variações na atividade alelopática da chalcona, 2,4'-dimetoxichalcona, em função dos precursores, ortoanisaldeído e 4-metoxiacetofenona, e de alterações nestes. Os bioensaios foram monitorados em condições controladas de 25 ºC e fotoperíodo de 12 horas. Como plantas-teste foram utilizadas as plantas daninhas malícia (Mimosa pudica) e mata-pasto (Senna obtusifolia). A atividade alelopática foi analisada em concentrações fixas de 100, 200 e 300 mg L-1. A chalcona foi obtida via reação de condensação entre a 4-metoxiacetofenona e o ortoanisaldeído. Os resultados indicaram que a atividade alelopática está relacionada, em princípio, ao precursor A, 4-metoxiacetofenona. Mudanças nos precursores indicaram a possibilidade de aumentar a atividade alelopática, em especial no precursor A. Ausência do grupo CH3O propiciou redução na atividade alelopática, indicando ser importante para a atividade. A presença de dois grupamentos OCH3 no precursor da porção B da chalcona aumentou para 62% a atividade do aldeído. Esses resultados indicam que alterações de substâncias com atividades alelopáticas são uma possível via para enfrentar os problemas atrelados aos processos de isolamento e identificação de moléculas químicas com atividade alelopática, em espécies de plantas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background levels of exocyclic DNA adducts have been detected in rodent and human tissues. Several studies have focused on bifunctional electrophiles generated from lipid peroxidation as one of the endogenous sources of these lesions. We have previously shown that the reaction of 2'-deoxyguanosine (dGuo) with trans,trans-2,4-decadienal (DDE), a highly cytotoxic aldehyde generated as a product of lipid peroxidation in cell membranes, results in the formation of a number of different base derivatives. Three of these derivatives have been fully characterized as 1,N-2-etheno-2'-deoxyguanosine adducts. In the present work, four additional adducts, designated A3-A6, were isolated from in vitro reactions by reversed-phase HPLC and fully characterized on the basis of spectroscopic measurements. Adducts A3-A6 are four diastereoisomeric 1,N-2-hydroxyethano-2'-deoxyguanosine derivatives possessing a carbon side chain with a double bond and a hydroxyl group. The systematic name of these adducts is 6-hydroxy3-(2'-deoxy-beta-D-erythro-pentafuranosyl)-7-((E)-1-hydroxy-oct-2-enyl)-3,5,6,7-tetrahydro-imidazo- [1,2-a]purin-9-one. The proposed reaction mechanism yielding adducts A3-A6 involves DDE epoxidation at C2, followed by nucleophilic addition of the exocyclic amino group of dGuo to the C1 of the aldehyde and cyclization, via nucleophilic attack, on the C2 epoxy group by N-1. The formation of adducts A1-A6 has been investigated in acidic, neutral, and basic pH in the presence of H2O2 or tent-butyl hydroperoxide. Neutral conditions, in the presence of H2O2, have favored the formation of adducts A1 and A2, with minor amounts of A3-A6, which were prevalent under basic conditions. These data indicate that DDE can modify DNA bases through different oxidative pathways involving its two double bonds. It is important to structurally characterize DNA base derivatives induced by alpha,beta-unsaturated aldehydes so that the genotoxic risks associated with the lipid peroxidation process can be assessed.