962 resultados para Adaptor Proteins, Vesicular Transport


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mitochondrial outer membrane (MOM) separates the mitochondria from the cytoplasm, serving both as a barrier and as a gateway. Protein complexes — believed to be universally conserved in all eukaryotes — reside in the MOM to orchestrate and control metabolite exchange, lipid metabolism and uptake of biopolymers such as protein and RNA. African trypanosomes are the causative agent of the sleeping sickness in humans. The parasites are among the earliest diverging eukaryotes that have bona fide mitochondria capable of oxidative phosphorylation. Trypanosomes have unique mitochondrial biology that concerns their mitochondrial metabolism and their unusual mitochondrial morphology that differs to great extent between life stages. Another striking feature is the organization of the mitochondrial genome that does not encode any tRNA genes, thus all tRNAs needed for mitochondrial translation have to be imported. However, the MOM of T. brucei is essentially unchartered territory. It lacks a canonical protein import machinery and facilitation of tRNA translocation remains completely elusive. Using biochemical fractionation and label-free quantitative mass spectrometry for correlated protein abundance-profiling we were able to identify a cluster of 82 candidate proteins that can be localized to the trypanosomal MOM with high confidence. This enabled us to identify a highly unusual, potentially archaic protein import machinery that might also transport tRNAs. Moreover, two-thirds of the identified polypeptides present on the MOM have never been associated with mitochondria before. 40 proteins share homology with proteins of known functions. The function of 42 proteins remains unknown. 11 proteins are essential for the disease-causing bloodstream form of T. brucei and therefore may be exploited as novel drug targets. A comparison with the outer membrane proteome of yeast defines a set of 17 common proteins that are likely present in the MOM of all eukaryotes. Known factors involved in the regulation of mitochondrial morphology are virtually absent in T. brucei. Interestingly, RNAi-mediated ablation of three outer membrane proteins of unknown function resulted in a collapse of the network-like mitochondrion of insect-stage parasites and therefore directly or indirectly are involved in the regulation of mitochondrial morphology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pseudotype viruses are useful for studying the envelope proteins of harmful viruses. This work describes the pseudotyping of vesicular stomatitis virus (VSV) with the envelope glycoproteins of highly pathogenic avian influenza viruses. VSV lacking the homotypic glycoprotein (G) gene (VSVΔG) was used to express haemagglutinin (HA), neuraminidase (NA) or the combination of both. Propagation-competent pseudotype viruses were only obtained when HA and NA were expressed from the same vector genome. Pseudotype viruses containing HA from different H5 clades were neutralized specifically by immune sera directed against the corresponding clade. Fast and sensitive reading of test results was achieved by vector-mediated expression of GFP. Pseudotype viruses expressing a mutant VSV matrix protein showed restricted spread in IFN-competent cells. This pseudotype system will facilitate the detection of neutralizing antibodies against virulent influenza viruses, circumventing the need for high-level biosafety containment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chromatin condensation within the nucleus of developing spermatids involves replacement of histones by transition proteins, which are in turn replaced by protamines. The importance of transition proteins in the complex process of spermiogenesis has, to date, been only speculative. This study sought to investigate the extent to which transition proteins are essential or have redundant functions by characterizing sperm produced in mice expressing all combinations of Tnp-null alleles. Results from breeding trials of 8 weeks duration revealed that, on average, wildtype males produced about 14 offspring whereas TP2 and TP1 single-knockout males produced about 8 and 1 offspring, respectively, demonstrating their subfertility. Genotypes with less than two Tnp wildtype alleles, as well as double-knockout mutants, were completely infertile. Sperm from males with impaired fertility had poor progressive motility, heterogeneous chromatin condensation, incompletely processed protamine 2 and head and tail abnormalities. Generally, as the number of Tnp-null alleles increased so did the severity of abnormalities. However, specific morphological abnormalities were associated with the absence of an individual TP. Studies which sought to identify possible root causes for abnormalities in thiol-rich sperm structures revealed no differences in thiol content or sulfhydryl oxidation status within the nucleus but nuclei and tails from single-knockout mutants were severely disrupted following thiol reduction. Binding of fluorescent dyes to DNA was normal in sperm recovered from caput but abnormal in cauda epididymal sperm from TP1 knockouts and infertile double mutants. Injection of cauda epididymal sperm from double knockouts into oocytes produced very few offspring; however, after injection with testicular sperm, the efficiency was no different from wildtype. These results suggest DNA structural alterations or degradation during epididymal transport of sperm resulting in a diminished capacity of the paternal DNA of these sperm to produce offspring. The overall importance of transition proteins for normal chromatin condensation and production of fertile sperm has been demonstrated. Furthermore, identification of specific morphological abnormalities associated with the absence of an individual transition protein provides new evidence that the proteins are not completely redundant and each fulfills some unique function. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Membranes are essential for the integrity and function of the cell. The collective property of the lipid bilayer is critical in providing an optimal functioning environment for membrane proteins. The simple yet well-characterized bacterium Escherichia coli serves an ideal model system to study the function of specific lipids since its lipid content can be easily manipulated. The most abundant lipid in E. coli membrane is phosphatidylethanolamine (PE, 70-80%). A PE-lacking E. coli mutant displays a complex mixture of deficient phenotypes, suggesting a profound role for PE in different aspects of cell function. A novel role of PE as a topological and functional determinant for membrane proteins has been established using lactose permease (LacY) as a model protein. PE is found to be required for energy-dependent uphill transport process of LacY. In PE-lacking membranes, LacY undergoes a dramatic conformational change, and the first half of the protein adopts an inverted topology with respect to the bilayer plane. ^ The work reported here was initiated to understand the molecular properties of lipids that enable their function as topological and functional determinants for membrane proteins. A glycolipid, monoglucosyldiacylglycerol (MGlcDAG) which shares physicochemical similarities with PE, was introduced to PE-lacking E. coli membranes. The introduction of MGlcDAG suppresses many of the PE-deficient phenotypes, and in particular supports the function and native topology of LacY. ^ The lipid-sensitive topogenic signals encoded in the amino acid sequence of LacY were also identified. Native LacY adopts an inverted topology when synthesized without PE, but mutation of specific acidic residues in the cytoplasmic extra-membrane domains can prevent this inversion and supports a native topological organization of LacY in PE-lacking membranes. These results suggest that it is the interplay between the collective charge properties of the lipid bilayer and extra-membrane loops of protein that determines the final orientation of transmembrane domains. By comparing the similarities as well as differences between these two lipids, we established how specific physical and chemical properties of lipids influence various cell functions and elucidated the molecular basis for the novel role of lipids in determining membrane protein topology. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In eukaryotic cells, the ESCRTs (endosomal sorting complexes required for transport) machinery is required for cellular processes such as endosomal sorting, retroviral budding and cytokinesis. The ALG-2 interacting protein Alix is a modular adaptor protein that is critically involved in these ESCRTs-associated cellular processes and consists of an N-terminal Bro1 domain, a middle V domain and C-terminal Pro-rich domain (PRD). In these cellular processes, Alix interacts with the ESCRT-III component CHMP4 at the Bro1 domain, with HIV-1 p6 Gag or EIAV p9Gag at the V domain, and with the ESCRT-I component TSG101 at the Pro-rich domain. Here we demonstrate that the N-terminal Bro1 domain forms an intramolecular interaction with C-terminal PRD within Alix. This Bro1-PRD intramolecular interaction forms a closed conformation of Alix that autoinhibits Alix interaction with all of these partner proteins. Moreover, the binding of Ca2+-activated ALG-2 to the PRD of Alix relieves the autoinhibitory intramolecular interaction, resulting in an open conformation of Alix which is able to interact with all of these partner proteins. The partner proteins bound to Alix in turn maintain Alix in the open conformation after ALG-2 dissociation with Alix. Consistent with the effect of Ca2+-activated ALG-2 on opening/activating Alix in these ESCRTs-associated functions, ALG-2 overexpression accelerates EGF-induced degradation of EGFR in an Alix-dependent manner. These findings discover an intrinsic autoinhibitory mechanism of Alix and a two-step process to activate/open Alix and then keep Alix active/open. This study has solved long-standing issues on the regulations of Alix in ESCRTs-associated functions and the role of ALG-2-Alix interaction, and may serve as the structural basis for further studies about Alix regulations. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Steroid binding proteins are an obvious choice in the search for genetic factors in plasma that might predispose to upper body obesity, a risk factor for non-insulin dependent diabetes and cardiovascular disease. The two steroid binding proteins studied by isoelectric focusing were sex hormone binding globulin (SHBG), the transport protein for sex hormones and corticosteroid binding globulin (CBG), the transport protein for corticosteroids. Auto-radiography and immunoblotting on polyacrylamide gels were used to detect polymorphism in SHBG. Immunoblotting on agarose gels was used to visualize corticosteroid binding globulin. SHBG showed similar structural variation in American Caucasians, American Blacks and Canadian Indians. Two alleles (1, 2) were hypothesized with highly polymorphic frequencies in all three ethnic groups. CBG was not found to be polymorphic, but two variants were found in Caucasian male twins and in a Black individual. The finding of a good assay and a polymorphic system for SHBG are the first steps for additional studies into disease associations. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Agrobacterium tumefaciens is a plant pathogen with the unique ability to export oncogenic DNA-protein complexes (T-complexes) to susceptible plant cells and cause crown gall tumors. Delivery of the T-complexes across the bacterial membranes requires eleven VirB proteins and VirD4, which are postulated to form a transmembrane transporter. This thesis examines the subcellular localization and oligomeric structure of the 87-kDa VirB4 protein, which is one of three essential ATPases proposed to energize T-complex transport and/or assembly. Results of subcellular localization studies showed that VirB4 is tightly associated with the cytoplasmic membrane, suggesting that it is a membrane-spanning protein. The membrane topology of VirB4 was determined by using a nested deletion strategy to generate random fusions between virB4 and the periplasmically-active alkaline phosphatase, $\sp\prime phoA$. Analysis of PhoA and complementary $\beta$-galactosidase reporter fusions identified two putative periplasmically-exposed regions in VirB4. A periplasmic exposure of one of these regions was further confirmed by protease susceptibility assays using A. tumefaciens spheroplasts. To gain insight into the structure of the transporter, the topological configurations of other VirB proteins were also examined. Results from hydropathy analyses, subcellular localization, protease susceptibility, and PhoA reporter fusion studies support a model that all of the VirB proteins localize at one or both of the bacterial membranes. Immunoprecipitation and Co$\sp{2+}$ affinity chromatography studies demonstrated that native VirB4 (87-kDa) and a functional N-terminally tagged HIS-VirB4 derivative (89-kDa) interact and that the interaction is independent of other VirB proteins. A $\lambda$ cI repressor fusion assay supplied further evidence for VirB4 dimer formation. A VirB4 dimerization domain was localized to the N-terminal third of the protein, as judged by: (i) transdominance of an allele that codes for this region of VirB4; (ii) co-retention of a His-tagged N-terminal truncation derivative and native VirB4 on Co$\sp{2+}$ affinity columns; and (iii) dimer formation of the N-terminal third of VirB4 fused to the cI repressor protein. Taken together, these findings are consistent with a model that VirB4 is topologically configured as an integral cytoplasmic membrane protein with two periplasmic domains and that VirB4 assembles as homodimers via an N-terminal dimerization domain. Dimer formation is postulated to be essential for stabilization of VirB4 monomers during T-complex transporter assembly. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Shc proteins are implicated in coupling receptor tyrosine kinases to the mitogen-activated protein kinase (MAPK) pathway by recruiting Grb2/SOS to the plasma membrane. To better understand the role of Shc in oncogenesis brought about by point mutation activated neu (p185*), we transfected a Shc mutant (ShcΔCH1), which lacks the Grb2 binding site Y317 by deletion of collagen-homology domain 1, into p185*-transformed NIH3T3 cells. The cellular transformation phenotypes were found to be largely suppressed by expression of ShcΔCH1. This study indicates that Shc plays a critical role in mediating the oncogenical signals of p185*. Although ShcΔCH1 still retained another Grb2 binding site (Y239/240), we did not detect its physical association with Grb2. We also found that ShcΔCH1 could associate with p185*; however, this association did not interfere with the endogenous Shc-p185* interaction or the Shc-Grb2 interaction. In addition, p185*-mediated MAPK/Elk activation, PI3-K activation and Src activation likewise was not inhibited by ShcΔCH1 expression. Taken together, our current study clearly indicates that ShcΔCH1 suppresses the p185*-induced transformation, and that this suppression is mediated through a MAPK-independent and possibly PI3-K, Src-independent pathway. These results suggest that Shc may be involved in other unidentified signal pathways which are critical for p185*-induced cellular transformation besides the three pathways that we have studied. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

βarrestins mediate the desensitization of the β2-adrenergic receptor (β2AR) and many other G protein-coupled receptors (GPCRs). Additionally, βarrestins initiate the endocytosis of these receptors via clathrin coated-pits and interact directly with clathrin. Consequently, it has been proposed that βarrestins serve as clathrin adaptors for the GPCR family by linking these receptors to clathrin lattices. AP-2, the heterotetrameric clathrin adaptor protein, has been demonstrated to mediate the internalization of many types of plasma membrane proteins other than GPCRs. AP-2 interacts with the clathrin heavy chain and cytoplasmic domains of receptors such as those for epidermal growth factor and transferrin. In the present study we demonstrate the formation of an agonist-induced multimeric complex containing a GPCR, βarrestin 2, and the β2-adaptin subunit of AP-2. β2-Adaptin binds βarrestin 2 in a yeast two-hybrid assay and coimmunoprecipitates with βarrestins and β2AR in an agonist-dependent manner in HEK-293 cells. Moreover, β2-adaptin translocates from the cytosol to the plasma membrane in response to the β2AR agonist isoproterenol and colocalizes with β2AR in clathrin-coated pits. Finally, expression of βarrestin 2 minigene constructs containing the β2-adaptin interacting region inhibits β2AR endocytosis. These findings point to a role for AP-2 in GPCR endocytosis, and they suggest that AP-2 functions as a clathrin adaptor for the endocytosis of diverse classes of membrane receptors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The generation of transport vesicles at the endoplasmic reticulum (ER) depends on cytosolic proteins, which, in the form of subcomplexes (Sec23p/Sec24p; Sec13p/Sec31p) are recruited to the ER membrane by GTP-bound Sar1p and form the coat protein complex II (COPII). Using affinity chromatography and two-hybrid analyses, we found that the essential COPII component Sec24p, but not Sec23p, binds to the cis-Golgi syntaxin Sed5p. Sec24p/Sed5p interaction in vitro was not dependent on the presence of [Sar1p⋅GTP]. The binding of Sec24p to Sed5p is specific; none of the other seven yeast syntaxins bound to this COPII component. Whereas the interaction site of Sec23p is within the N-terminal half of the 926-aa-long Sec24p (amino acid residues 56–549), Sed5p binds to the N- and C-terminal halves of the protein. Destruction by mutagenesis of a potential zinc finger within the N-terminal half of Sec24p led to a nonfunctional protein that was still able to bind Sec23p and Sed5p. Sec24p/Sed5p binding might be relevant for cargo selection during transport-vesicle formation and/or for vesicle targeting to the cis-Golgi.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many cellular events depend on a tightly compartmentalized distribution of H+ ions across membrane-bound organelles. However, measurements of organelle pH in living cells have been scarce. Several mutants of the Aequorea victoria green fluorescent protein (GFP) displayed a pH-dependent absorbance and fluorescent emission, with apparent pKa values ranging from 6.15 (mutations F64L/S65T/H231L) and 6.4 (K26R/F64L/S65T/Y66W/N146I/M153T/V163A/N164H/H231L) to a remarkable 7.1 (S65G/S72A/T203Y/H231L). We have targeted these GFPs to the cytosol plus nucleus, the medial/trans-Golgi by fusion with galactosyltransferase, and the mitochondrial matrix by using the targeting signal from subunit IV of cytochrome c oxidase. Cells in culture transfected with these cDNAs displayed the expected subcellular localization by light and electron microscopy and reported local pH that was calibrated in situ with ionophores. We monitored cytosolic and nuclear pH of HeLa cells, and mitochondrial matrix pH in HeLa cells and in rat neonatal cardiomyocytes. The pH of the medial/trans-Golgi was measured at steady-state (calibrated to be 6.58 in HeLa cells) and after various manipulations. These demonstrated that the Golgi membrane in intact cells is relatively permeable to H+, and that Cl− serves as a counter-ion for H+ transport and likely helps to maintain electroneutrality. The amenability to engineer GFPs to specific subcellular locations or tissue targets using gene fusion and transfer techniques should allow us to examine pH at sites previously inaccessible.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Homologues of the amtB gene of enteric bacteria exist in all three domains of life. Although their products are required for transport of the ammonium analogue methylammonium in washed cells, only in Saccharomyces cerevisiae have they been shown to be necessary for growth at low NH4+ concentrations. We now demonstrate that an amtB strain of Escherichia coli also grows slowly at low NH4+ concentrations in batch culture, but only at pH values below 7. In addition, we find that the growth defect of an S. cerevisiae triple-mutant strain lacking the function of three homologues of the ammonium/methylammonium transport B (AmtB) protein [called methylammonium/ammonium permeases (MEP)] that was observed at pH 6.1 is relieved at pH 7.1. These results provide direct evidence that AmtB participates in acquisition of NH4+/NH3 in bacteria as well as eucarya. Because NH3 is the species limiting at low pH for a given total concentration of NH4+ + NH3, results with both organisms indicate that AmtB/MEP proteins function in acquisition of the uncharged form. We confirmed that accumulation of [14C]methylammonium depends on its conversion to γ-N-methylglutamine, an energy-requiring reaction catalyzed by glutamine synthetase, and found that at pH 7, constitutive expression of AmtB did not relieve the growth defects of a mutant strain of Salmonella typhimurium that appears to require a high internal concentration of NH4+/NH3. Hence, contrary to previous views, we propose that AmtB/MEP proteins increase the rate of equilibration of the uncharged species, NH3, across the cytoplasmic membrane rather than actively transporting—that is, concentrating—the charged species, NH4+.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mechanism by which cotransport proteins couple their substrates across cell membranes is not known. A commonly proposed model is that cotransport results from ligand-induced conformational transitions that change the accessibility of ligand-binding sites from one side of the membrane to the other. To test this model, we have measured the accessibility of covalent probes to a cysteine residue (Q457C) placed in the putative sugar-translocation domain of the Na+/glucose cotransporter (SGLT1). The mutant protein Q457C was able to transport sugar, but transport was abolished after alkylation by methanethiosulfonate reagents. Alkylation blocked sugar translocation but not sugar binding. Accessibility of Q457C to alkylating reagents required external Na+ and was blocked by external sugar and phlorizin. The voltage dependence of accessibility was directly correlated with the presteady–state charge movement of SGLT1. Voltage-jump experiments with rhodamine-6-maleimide-labeled Q457C showed that the time course and level of changes in fluorescence closely followed the presteady–state charge movement. We conclude that conformational changes are responsible for the coupling of Na+ and sugar transport and that Q457 plays a critical role in sugar translocation by SGLT1.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The malarial parasite dramatically alters its host cell by exporting and targeting proteins to specific locations within the erythrocyte. Little is known about the mechanisms by which the parasite is able to carry out this extraparasite transport. The fungal metabolite brefeldin A (BFA) has been used to study the secretory pathway in eukaryotes. BFA treatment of infected erythrocytes inhibits protein export and results in the accumulation of exported Plasmodium proteins into a compartment that is at the parasite periphery. Parasite proteins that are normally localized to the erythrocyte membrane, to nonmembrane bound inclusions in the erythrocyte cytoplasm, or to the parasitophorous vacuolar membrane accumulate in this BFA-induced compartment. A single BFA-induced compartment is detected per parasite and the various exported proteins colocalize to this compartment regardless of their final destinations. Parasite membrane proteins do not accumulate in this novel compartment, but accumulate in the endoplasmic reticulum (ER), suggesting that the parasite has two secretory pathways. This alternate secretory pathway is established immediately after merozoite invasion and at least some dense granule proteins also use the alternate pathway. The BFA-induced compartment exhibits properties that are similar to the ER, but it is clearly distinct from the ER. We propose to call this new organelle the secondary ER of apicomplexa. This ER-like organelle is an early, if not the first, step in the export of Plasmodium proteins into the host erythrocyte.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The nontoxic proteolytic C fragment of tetanus toxin (TTC peptide) has the same ability to bind nerve cells and be retrogradely transported through a synapse as the native toxin. We have investigated its potential use as an in vivo neurotropic carrier. In this work we show that a hybrid protein encoded by the lacZ–TTC gene fusion retains the biological functions of both proteins in vivo—i.e., retrograde transynaptic transport of the TTC fragment and β-galactosidase enzymatic activity. After intramuscular injection, enzymatic activity could be detected in motoneurons and connected neurons of the brainstem areas. This strategy could be used to deliver a biological activity to neurons from the periphery to the central nervous system. Such a hybrid protein could also be used to map synaptic connections between neural cells.