816 resultados para Adaptive Modelling, Entropy Evolution, Sustainable Design
Resumo:
In this paper we propose a fast adaptive Importance Sampling method for the efficient simulation of buffer overflow probabilities in queueing networks. The method comprises three stages. First we estimate the minimum Cross-Entropy tilting parameter for a small buffer level; next, we use this as a starting value for the estimation of the optimal tilting parameter for the actual (large) buffer level; finally, the tilting parameter just found is used to estimate the overflow probability of interest. We recognize three distinct properties of the method which together explain why the method works well; we conjecture that they hold for quite general queueing networks. Numerical results support this conjecture and demonstrate the high efficiency of the proposed algorithm.
Resumo:
Since cyclothialidine was discovered as the most active DNA gyrase inhibitor in 1994, enormous efforts have been devoted to make it into a commercial medicine by a number of pharmaceutical companies and research groups worldwide. However, no serious breakthrough has been made up to now. An essential problem involved with cyclothialidine is that though it demonstrated the potent inhibition of DNA gyrase, it showed little activity against bacteria. This probably is attributable to its inability to penetrate bacterial cell walls and membranes. We applied the TSAR programme to generate a QSAR equation to the gram-negative organisms. In that equation, LogP is profoundly indicated as the key factor influencing the cyclothialidine activity against bacteria. However, the synthesized new analogues have failed to prove that. In the structure based drug design stage, we designed a group of open chain cyclothialidine derivatives by applying the SPROUT programme and completed the syntheses. Improved activity is found in a few analogues and a 3D pharmacophore of the DNA gyrase B is proposed to lead to synthesis of the new derivatives for development of potent antibiotics.
Resumo:
This thesis deals with the problem of Information Systems design for Corporate Management. It shows that the results of applying current approaches to Management Information Systems and Corporate Modelling fully justify a fresh look to the problem. The thesis develops an approach to design based on Cybernetic principles and theories. It looks at Management as an informational process and discusses the relevance of regulation theory to its practice. The work proceeds around the concept of change and its effects on the organization's stability and survival. The idea of looking at organizations as viable systems is discussed and a design to enhance survival capacity is developed. It takes Ashby's theory of adaptation and developments on ultra-stability as a theoretical framework and considering conditions for learning and foresight deduces that a design should include three basic components: A dynamic model of the organization- environment relationships; a method to spot significant changes in the value of the essential variables and in a certain set of parameters; and a Controller able to conceive and change the other two elements and to make choices among alternative policies. Further considerations of the conditions for rapid adaptation in organisms composed of many parts, and the law of Requisite Variety determine that successful adaptive behaviour requires certain functional organization. Beer's model of viable organizations is put in relation to Ashby's theory of adaptation and regulation. The use of the Ultra-stable system as abstract unit of analysis permits developing a rigorous taxonomy of change; it starts distinguishing between change with in behaviour and change of behaviour to complete the classification with organizational change. It relates these changes to the logical categories of learning connecting the topic of Information System design with that of organizational learning.
Resumo:
This thesis is a theoretical study of the accuracy and usability of models that attempt to represent the environmental control system of buildings in order to improve environmental design. These models have evolved from crude representations of a building and its environment through to an accurate representation of the dynamic characteristics of the environmental stimuli on buildings. Each generation of models has had its own particular influence on built form. This thesis analyses the theory, structure and data of such models in terms of their accuracy of simulation and therefore their validity in influencing built form. The models are also analysed in terms of their compatability with the design process and hence their ability to aid designers. The conclusions are that such models are unlikely to improve environmental performance since: a the models can only be applied to a limited number of building types, b they can only be applied to a restricted number of the characteristics of a design, c they can only be employed after many major environmental decisions have been made, d the data used in models is inadequate and unrepresentative, e models do not account for occupant interaction in environmental control. It is argued that further improvements in the accuracy of simulation of environmental control will not significantly improve environmental design. This is based on the premise that strategic environmental decisions are made at the conceptual stages of design whereas models influence the detailed stages of design. It is hypothesised that if models are to improve environmental design it must be through the analysis of building typologies which provides a method of feedback between models and the conceptual stages of design. Field studies are presented to describe a method by which typologies can be analysed and a theoretical framework is described which provides a basis for further research into the implications of the morphology of buildings on environmental design.
Resumo:
The work described in this thesis focuses on the use of a design-of-experiments approach in a multi-well mini-bioreactor to enable the rapid establishments of high yielding production phase conditions in yeast, which is an increasingly popular host system in both academic and industrial laboratories. Using green fluorescent protein secreted from the yeast, Pichia pastoris, a scalable predictive model of protein yield per cell was derived from 13 sets of conditions each with three factors (temperature, pH and dissolved oxygen) at 3 levels and was directly transferable to a 7 L bioreactor. This was in clear contrast to the situation in shake flasks, where the process parameters cannot be tightly controlled. By further optimisating both the accumulation of cell density in batch and improving the fed-batch induction regime, additional yield improvement was found to be additive to the per cell yield of the model. A separate study also demonstrated that improving biomass improved product yield in a second yeast species, Saccharomyces cerevisiae. Investigations of cell wall hydrophobicity in high cell density P. pastoris cultures indicated that cell wall hydrophobin (protein) compositional changes with growth phase becoming more hydrophobic in log growth than in lag or stationary phases. This is possibly due to an increased occurrence of proteins associated with cell division. Finally, the modelling approach was validated in mammalian cells, showing its flexibility and robustness. In summary, the strategy presented in this thesis has the benefit of reducing process development time in recombinant protein production, directly from bench to bioreactor.
Resumo:
Computer-based simulation is frequently used to evaluate the capabilities of proposed manufacturing system designs. Unfortunately, the real systems are often found to perform quite differently from simulation predictions and one possible reason for this is an over-simplistic representation of workers' behaviour within current simulation techniques. The accuracy of design predictions could be improved through a modelling tool that integrates with computer-based simulation and incorporates the factors and relationships that determine workers' performance. This paper explores the viability of developing a similar tool based on our previously published theoretical modelling framework. It focuses on evolving this purely theoretical framework towards a practical modelling tool that can actually be used to expand the capabilities of current simulation techniques. Based on an industrial study, the paper investigates how the theoretical framework works in practice, analyses strengths and weaknesses in its formulation, and proposes developments that can contribute towards enabling human performance modelling in a practical way.