820 resultados para Active power generation
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper presents a technique to add flexibility in the control of power electronic converters. The power converter can function as an active power filter, as a local power source interface or perform both functions i. e. mitigate current disturbances and inject power into the grid simultaneously, configuring it as a multifunctional device. The main goal is to extract the full capability of the grid connected power electronic converter to achieve maximum benefits. To achieve this goal, the orthogonal current decomposition of the Conservative Power Theory is used. Each orthogonal current component is weighted by means of different compensation factors (k_i), which are set instantaneously and independently, in any percentage by means of the load performance factors (λ_i), providing an online flexibility in relation to compensation objectives. Finally, to validate the effectiveness and performance the proposed approach, simulations and experimental results are presented.
Resumo:
Pós-graduação em Engenharia Elétrica - FEB
Resumo:
In the wake of current global image involving environmental impacts, the use of wind power has had a remarkable growth in recent years as a technique for generating electricity. In fact, it is a source featuring strong dissemination of technology which provides decrease in costs and a greater access to low-income electricity. PROINFA (Incentive Program for Alternative Energy Sources) promotes a greater diffusion of new technologies for power generation, in particular wind-produced. Due to such a scenario on the exploitation of such energy source, current analysis discusses strategies for the development of domestic wind technology and the implications for electricity-lacking rural areas. Analysis shows a similar behavior between rural populations lacking electricity and the amount of potential energy available in the region. It is expected that this assay will contribute towards the establishment of public policies for wind-energy parks on rural farms in the North and Northeast regions of Brazil.
Resumo:
In October 2008, the Brazilian Government announced plans to invest US$212 billion in the construction of nuclear power plants, totaling a joint capacity of 60,000 MW. Apart from this program, officials had already announced the completion of the construction of the nuclear plant Angra III; the construction of large-scale hydroelectric plans in the Amazon and the implantation of natural gas, biomass and coal thermoelectric plants in other regions throughout the country. Each of these projects has its proponents and its opponents, who bring forth concerns and create heated debates in the specialized forums. In this article, some of these concerns are explained, especially under the perspective of the comparative analysis of costs involved. Under such merit figures, the nuclear option, when compared to hydro plants, combined with conventional thermal and biomass-fueled plants, and even wind, to expand Brazilian power-generation capacity, does not appear as a priority. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The objective of the Ph.D. thesis is to put the basis of an all-embracing link analysis procedure that may form a general reference scheme for the future state-of-the-art of RF/microwave link design: it is basically meant as a circuit-level simulation of an entire radio link, with – generally multiple – transmitting and receiving antennas examined by EM analysis. In this way the influence of mutual couplings on the frequency-dependent near-field and far-field performance of each element is fully accounted for. The set of transmitters is treated as a unique nonlinear system loaded by the multiport antenna, and is analyzed by nonlinear circuit techniques. In order to establish the connection between transmitters and receivers, the far-fields incident onto the receivers are evaluated by EM analysis and are combined by extending an available Ray Tracing technique to the link study. EM theory is used to describe the receiving array as a linear active multiport network. Link performances in terms of bit error rate (BER) are eventually verified a posteriori by a fast system-level algorithm. In order to validate the proposed approach, four heterogeneous application contexts are provided. A complete MIMO link design in a realistic propagation scenario is meant to constitute the reference case study. The second one regards the design, optimization and testing of various typologies of rectennas for power generation by common RF sources. Finally, the project and implementation of two typologies of radio identification tags, at X-band and V-band respectively. In all the cases the importance of an exhaustive nonlinear/electromagnetic co-simulation and co-design is demonstrated to be essential for any accurate system performance prediction.
Resumo:
Plastic solar cells bear the potential for large-scale power generation based on flexible, lightweight, inexpensive materials. Since the discovery of the photo-induced electron transfer from a conjugated polymer (electron-donor) to fullerene or its derivatives molecules (electron-acceptors), followed by the introduction of the bulk heterojunction concept which means donors and acceptors blended together to realize the fotoactive layer, materials and deposition techniques have been extensively studied. In this work, electrochemical-deposition methods of polymeric conductive films were studied in order to realize bulk heterojunction solar cells. Indium Tin Oxide (ITO) glass electrodes modified with a thin layer of poly(3,4-ethylenedioxythiophene) (PEDOT) were electrochemically prepared under potentiodynamic and potentiostatic conditions; then those techniques were applied for the electrochemical co-deposition of donor and acceptor on modified ITO electrode to produce the active layer (blend). For the deposition of the electron-donor polymer the electropolymerization of many functionalized thiophene monomers was investigated while, as regards acceptors, fullerene was used first, then the study was focused on its derivative PCBM ([6,6]-phenyl-C61-butyric acid methyl ester). The polymeric films obtained (PEDOT and blend) were electrochemically and spectrophotometrically characterized and the film thicknesses were evaluated by atomic force microscopy (AFM). Finally, to check the performances and the efficiency of the realized solar cells, tests were carried out under standard conditions. Nowadays bulk heterojunction solar cells are still poorly efficient to be competitively commercialized. A challenge will be to find new materials and better deposition techniques in order to obtain better performances. The research has led to several breakthroughs in efficiency, with a power conversion efficiency approaching 5 %. The efficiency of the solar cells produced in this work is even lower (lower than 1 %). Despite all, solar cells of this type are interesting and may represent a cheaper and easier alternative to traditional silicon-based solar panels.
Resumo:
The demand for novel renewable energy sources, together with the new findings on bacterial electron transport mechanisms and the progress in microbial fuel cell design, have raised a noticeable interest in microbial power generation. Microbial fuel cell (MFC) is an electrochemical device that converts organic substrates into electricity via catalytic conversion by microorganism. It has represented a continuously growing research field during the past few years. The great advantage of this device is the direct conversion of the substrate into electricity and in the future, MFC may be linked to municipal waste streams or sources of agricultural and animal waste, providing a sustainable system for waste treatment and energy production. However, these novel green technologies have not yet been used for practical applications due to their low power outputs and challenges associated with scale-up, so in-depth studies are highly necessary to significantly improve and optimize the device working conditions. For the time being, the micro-scale MFCs show great potential in the rapid screening of electrochemically active microbes. This thesis presents how it will be possible to optimize the properties and design of the micro-size microbial fuel cell for maximum efficiency by understanding the MFC system. So it will involve designing, building and testing a miniature microbial fuel cell using a new species of microorganisms that promises high efficiency and long lifetime. The new device offer unique advantages of fast start-up, high sensitivity and superior microfluidic control over the measured microenvironment, which makes them good candidates for rapid screening of electrode materials, bacterial strains and growth media. It will be made in the Centre of Hybrid Biodevices (Faculty of Physical Sciences and Engineering, University of Southampton) from polymer materials like PDMS. The eventual aim is to develop a system with the optimum combination of microorganism, ion exchange membrane and growth medium. After fabricating the cell, different bacteria and plankton species will be grown in the device and the microbial fuel cell characterized for open circuit voltage and power. It will also use photo-sensitive organisms and characterize the power produced by the device in response to optical illumination.
Resumo:
Autonomous system applications are typically limited by the power supply operational lifetime when battery replacement is difficult or costly. A trade-off between battery size and battery life is usually calculated to determine the device capability and lifespan. As a result, energy harvesting research has gained importance as society searches for alternative energy sources for power generation. For instance, energy harvesting has been a proven alternative for powering solar-based calculators and self-winding wristwatches. Thus, the use of energy harvesting technology can make it possible to assist or replace batteries for portable, wearable, or surgically-implantable autonomous systems. Applications such as cardiac pacemakers or electrical stimulation applications can benefit from this approach since the number of surgeries for battery replacement can be reduced or eliminated. Research on energy scavenging from body motion has been investigated to evaluate the feasibility of powering wearable or implantable systems. Energy from walking has been previously extracted using generators placed on shoes, backpacks, and knee braces while producing power levels ranging from milliwatts to watts. The research presented in this paper examines the available power from walking and running at several body locations. The ankle, knee, hip, chest, wrist, elbow, upper arm, side of the head, and back of the head were the chosen target localizations. Joints were preferred since they experience the most drastic acceleration changes. For this, a motor-driven treadmill test was performed on 11 healthy individuals at several walking (1-4 mph) and running (2-5 mph) speeds. The treadmill test provided the acceleration magnitudes from the listed body locations. Power can be estimated from the treadmill evaluation since it is proportional to the acceleration and frequency of occurrence. Available power output from walking was determined to be greater than 1mW/cm³ for most body locations while being over 10mW/cm³ at the foot and ankle locations. Available power from running was found to be almost 10 times higher than that from walking. Most energy harvester topologies use linear generator approaches that are well suited to fixed-frequency vibrations with sub-millimeter amplitude oscillations. In contrast, body motion is characterized with a wide frequency spectrum and larger amplitudes. A generator prototype based on self-winding wristwatches is deemed to be appropriate for harvesting body motion since it is not limited to operate at fixed-frequencies or restricted displacements. Electromagnetic generation is typically favored because of its slightly higher power output per unit volume. Then, a nonharmonic oscillating rotational energy scavenger prototype is proposed to harness body motion. The electromagnetic generator follows the approach from small wind turbine designs that overcome the lack of a gearbox by using a larger number of coil and magnets arrangements. The device presented here is composed of a rotor with multiple-pole permanent magnets having an eccentric weight and a stator composed of stacked planar coils. The rotor oscillations induce a voltage on the planar coil due to the eccentric mass unbalance produced by body motion. A meso-scale prototype device was then built and evaluated for energy generation. The meso-scale casing and rotor were constructed on PMMA with the help of a CNC mill machine. Commercially available discrete magnets were encased in a 25mm rotor. Commercial copper-coated polyimide film was employed to manufacture the planar coils using MEMS fabrication processes. Jewel bearings were used to finalize the arrangement. The prototypes were also tested at the listed body locations. A meso-scale generator with a 2-layer coil was capable to extract up to 234 µW of power at the ankle while walking at 3mph with a 2cm³ prototype for a power density of 117 µW/cm³. This dissertation presents the analysis of available power from walking and running at different speeds and the development of an unobtrusive miniature energy harvesting generator for body motion. Power generation indicates the possibility of powering devices by extracting energy from body motion.
Resumo:
Switching mode power supplies (SMPS) are subject to low power factor and high harmonic distortions. Active power-factor correction (APFC) is a technique to improve the power factor and to reduce the harmonic distortion of SMPSs. However, this technique results in double frequency output voltage variation which can be reduced by using a large output capacitance. Using large capacitors increases the cost and size of the converter. Furthermore, the capacitors are subject to frequent failures mainly caused by evaporation of the electrolytic solution which reduce the converter reliability. This thesis presents an optimal control method for the input current of a boost converter to reduce the size of the output capacitor. The optimum current waveform as a function of weighing factor is found by using the Euler Lagrange equation. A set of simulations are performed to determine the ideal weighing which gives the lowest possible output voltage variation as the converter still meets the IEC-61000-3-2 class-A harmonics requirements with a power factor of 0.8 or higher. The proposed method is verified by the experimental work. A boost converter is designed and it is run for different power levels, 100 W, 200 W and 400 W. The desired output voltage ripple is 10 V peak to peak for the output voltage of 200 Vdc. This ripple value corresponds to a ± 2.5% output voltage ripple. The experimental and the simulation results are found to be quite matching. A significant reduction in capacitor size, as high as 50%, is accomplished by using the proposed method.
Resumo:
The objective of this report is to study distributed (decentralized) three phase optimal power flow (OPF) problem in unbalanced power distribution networks. A full three phase representation of the distribution networks is considered to account for the highly unbalance state of the distribution networks. All distribution network’s series/shunt components, and load types/combinations had been modeled on commercial version of General Algebraic Modeling System (GAMS), the high-level modeling system for mathematical programming and optimization. The OPF problem has been successfully implemented and solved in a centralized approach and distributed approach, where the objective is to minimize the active power losses in the entire system. The study was implemented on the IEEE-37 Node Test Feeder. A detailed discussion of all problem sides and aspects starting from the basics has been provided in this study. Full simulation results have been provided at the end of the report.
Resumo:
The utilisation of biofuels in gas turbines is a promising alternative to fossil fuels for power generation. It would lead to significant reduction of CO2 emissions using an existing combustion technology, although significant changes seem to be needed and further technological development is necessary. The goal of this work is to perform energy and exergy analyses of the behaviour of gas turbines fired with biogas, ethanol and synthesis gas (bio-syngas), compared with natural gas. The global energy transformation process (i.e. from biomass to electricity) has also been studied. Furthermore, the potential reduction of CO2 emissions attained by the use of biofuels has been determined, considering the restrictions regarding biomass availability. Two different simulation tools have been used to accomplish the aims of this work. The results suggest a high interest and the technical viability of the use of Biomass Integrated Gasification Combined Cycle (BIGCC) systems for large scale power generation.
Resumo:
We present the possibility of a low work-function material, calcium aluminate electride, being used for a coating on a bare electrodynamic tether system. Analyses suggest that the coating would eliminate the need for an active cathodic device like a hollow cathode and, consequently, eliminate the need for an expellant to the hollow cathode, thus resulting in an electrodynamic tether system that requires no consumables. Applications include on-orbit power generation and deorbiting debris from low Earth orbit in a simple and trouble-free manner.
Resumo:
The maximum performance of bare electrodynamic tethers as power generating systems under OML-theory is analyzed. Results show that best performance in terms of power density is achieved by designing the tether in such a way to increase ohmic impedance with respect to plasma contact impedance, hence favoring longer and thinner tethers. In such condition the corresponding optimal value of the load impedance is seen to approach the ohmic impedance of the conducting tether. At the other extreme, when plasma contact impedance dominates (which is not optimal but can be relevant for some applications) optimum power generation is found by matching the load impedance with an effective tether-plasma contact impedance whose expression is derived.
Resumo:
In the C02 capture from power generation, the energy penalties for the capture are one of the main challenges. Nowadays, the post-combustion methods have energy penalties 10wer than the oxy combustion and pre-combustion technologies. One of the main disadvantages of the post combustion method is the fact that the capture ofC02at atmospheric pressure requires quite big equipment for the high flow rates of flue gas, and the 10w partial pressure of the CO2generates an important 10ss of energy. The A1lam cyc1e presented for NETPOWER gives high efficiencies in the power production and 10w energy penalties. A simulation of this cyc1e is made together with a simulation of power plants with pre-combustion and post-combustion capture and without capture for natural gas and forcoa1. The simulations give 10wer efficiencies than the proposed for NETPOWER For natural gas the efficiency is 52% instead of the 59% presented, and 33% instead of51% in the case of using coal as fuel. Are brought to light problems in the CO2compressor due the high flow ofC02that is compressed unti1300 bar to be recyc1ed into the combustor.