892 resultados para Active modal damping control


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Brazilian Network for Continuous Monitoring of GPS - RBMC, since its foundation in December of 1996, has been playing an essential role for the maintenance and user access of the fundamental geodetic frame in the country,. It provides users with a direct link to the Brazilian Geodetic System - SGB. Its role has become more relevant with the increasing use of space navigation technology in the country. Recently, Brazil adopted a new geodetic system, SIRGAS2000, in February 2005, fully compatible with GNSS technology. The paper provides an overview of the recent modernization phases the RBMC network has undergone highlighting its future steps. From its current post-mission mode, the RBMC will evolve into a real-time network, providing real-time data and real-time correction to users. The network enhanced with modern GPS receivers and the addition of atomic clocks will be used to compute WADGPS-type corrections to be transmitted, in real time, to users in Brazil and surrounding areas. It is estimated that users will be able to achieve a horizontal accuracy around 0.5 m (1σ) in static and kinematic positioning and better for dual frequency users. The availability of the WADGPS service will allow users to tie to the new SIRGAS2000 system in a more rapid and transparent way for positioning and navigation applications. It should be emphasized that support to post-mission static positioning will continue to be provided to users interested in higher accuracy levels. In addition to this, a post-mission Precise Point Positioning (PPP) service will be provided based on the one currently provided by the Geodetic Survey Division of NRCan (CSRS-PPP). The modernization of the RBMC is under development based on a cooperation signed at the end of 2004 with the University of New Brunswick, supported by the Canadian International Development Agency and the Brazilian Cooperation Agency. The Geodetic Survey Division of NRCan is also participating in this modernization effort under the same project.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Brazilian Network for Continuous Monitoring of GPS - RBMC, since its foundation in December of 1996, has been playing an essential role for the maintenance and user access of the fundamental geodetic frame in the country. It provides to users a direct link to the Brazilian Geodetic System. Its role has become more relevant with the increasing use of space navigation technology in the country. Recently, Brazil adopted a new geodetic frame, SIRGAS2000, in February 2005, fully compatible with GNSS technology. The paper provides an overview of the recent modernization phases the RBMC network has undergone highlighting its future steps. From its current post-mission mode, the RBMC will evolve into a real-time network, providing real-time data and real-time correction to users. The network enhanced with modern GPS receivers and the addition of atomic clocks will be used to compute WADGPS-type corrections to be transmitted, in real time, to users in Brazil and surrounding areas. It is estimated that users will be able to achieve a horizontal accuracy around 0.5 m (1 σ) in static and kinematic positioning and better for dual frequency users. The availability of the WADGPS service will allow users to tie to the new SIRGAS2000 frame in a more rapid and transparent way for positioning and navigation applications. It should be emphasized that support to post-mission static positioning, will continue to be provided to users interested in higher accuracy levels. In addition to this, a post-mission Precise Point Positioning (PPP) service will be provided based on the one currently provided by the Geodetic Survey Division of NRCan (CSRS-PPP). The modernization of the RBMC is under development based on a cooperation signed at the end of 2004 with the University of New Brunswick, supported by the Canadian International Development Agency and the Brazilian Cooperation Agency. The Geodetic Survey Division of NRCan is also participating in this modernization effort under the same project. © Springer-Verlag Berlin Heidelberg 2009.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The recent years have seen the appearance of innovative system for acoustic and vibration attenuation, most of them integrating new actuator technologies. In this sense, the study of algorithms for active vibrations control in rotating machinery became an area of enormous interest, mainly due to countless demands of an optimal performance of mechanical systems in aircraft, aerospace and automotive structures. In this way, this paper presents an approach that is numerically verified for active vibration control in a rotor using Active Magnetic Bearings (AMB). The control design in a discrete state-space formulation is carried out through feedback technique and Linear Matrix Inequalities (LMI) approach. LMI is useful for system with uncertainties. The AMB uses electromagnetic forces to support a rotor without mechanical contact. By monitoring the position of the shaft and changing the dynamics of the system accordingly, the AMB keeps the rotor in a desired position. This unique feature has broadened for the applications of AMB and now they can be considered not only as a main support bearing in a machine but also as dampers for vibration control and force actuators. © 2009 Society for Experimental Mechanics Inc.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper presents small-signal stability studies of a multimachine power system, considering Static Synchronous Compensators (STATCOM)and discussed control modes of the STATCOM. The Power Sensitivity Model(PSM)is used to represent the electric power system. The study is based on modal analysis and time domain simulations. The results obtained allow concluding that the STATCOM improves the stabilization in the electric power system. © 2011 IEEE.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Brazilian Network for Continuous Monitoring of GNSS - RBMC is a national network of continuously operating reference GNSS stations. Since its establishment in December of 1996, it has been playing an essential role for the maintenance and user access of the fundamental geodetic frame in the country. In order to provide better services for RBMC, the Brazilian Institute of Geography and Statistics - IBGE and the National Institute of Colonization and Land Reform - INCRA are both partners involved in the National Geospatial Framework Project - PIGN. This paper provides an overview of the recent modernization phases the RBMC network has undergone highlighting its future steps. These steps involve the installation of new equipment, provide real time data from a group of core stations and compute real-time DGPS corrections, based on CDGPS (The real-time Canada-Wide DGPS Service) (The Real-Time Canada-Wide DGPS Service. http://www.cdgps.com/ 2009a). In addition to this, a post-mission Precise Point Positioning (PPP) service has been established based on the current Geodetic Survey Division of NRCan (CSRS-PPP) service. This service is operational since April 2009 and is in large use in the country. All activities mentioned before are based on a cooperation signed at the end of 2004 with the University of New Brunswick, supported by the Canadian International Development Agency and the Brazilian Cooperation Agency. The Geodetic Survey Division of NRCan is also participating in this modernization effort under the same project. This infrastructure of 66 GNSS stations, the real time, post processing services and the potentiality of providing Wide Area DGPS corrections in the future show that the RBMC system is comparable to those available in USA and Europe. © Springer-Verlag Berlin Heidelberg 2012.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, an application is considered of both active and passive controls, to suppression of chaotic behavior of a simple portal frame, under the excitation of an unbalanced DC motor, with limited power supply (non-ideal problem). The adopted active control strategy consists of two controls: the nonlinear (feedforward) in order to keep the controlled system in a desirable orbit, and the feedback control, which may be obtained by considering state-dependent Riccati equation control to bringing the system into the desired orbit using a magneto rheological (MR) damper. To control the electric current applied in control of the MR damper the Bouc-Wen mathematical model was used to the MR damper. The passive control was obtained by means of a nonlinear sub-structure with properties of nonlinear energy sink. Simulations showed the efficiency of both the passive control (energy pumping) and active control strategies in the suppression of the chaotic behavior. © The Author(s) 2012.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Usually, ancillary services are provided by large conventional generators; however, with the growing interest in distributed generation to satisfy energy and environmental requirements, it seems reasonable to assume that these services could also be provided by distributed generators in an economical and efficient way. In this paper, a proposal for enhancement of the capacity of active power reserve for frequency control using distributed generators is presented. The goal is to minimize the payments done by the transmission system operator to conventional and distributed generators for this ancillary service and for the energy needed to satisfy loads and system losses, subject to a set of constraints. In order to perform analysis, the proposal was implemented using data of the IEEE 30-bus transmission test system. Comparisons were performed considering conventional generators without and with distributed generators installed in the system.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Mecânica - FEIS

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In a smart grid environment, attention should be paid not only to the power supplied to satisfy loads and system losses but also to the services necessary to provide security and stability to the system: the so-called ancillary services. As they are well known the benefits that distributed generation can bring to electrical systems and to the environment, in this work the possibility that active power reserve for frequency control could be provided by distributed generators (DGs) in an efficient and economical way is explored. The proposed methodology was tested using the IEEE 34-bus distribution test system. The results show improvements in the capacity of the system for this ancillary service and decrease in system losses and payments of the distribution system operator to the DGs.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Building facilities have become important infrastructures for modern productive plants dedicated to services. In this context, the control systems of intelligent buildings have evolved while their reliability has evidently improved. However, the occurrence of faults is inevitable in systems conceived, constructed and operated by humans. Thus, a practical alternative approach is found to be very useful to reduce the consequences of faults. Yet, only few publications address intelligent building modeling processes that take into consideration the occurrence of faults and how to manage their consequences. In the light of the foregoing, a procedure is proposed for the modeling of intelligent building control systems, considersing their functional specifications in normal operation and in the of the event of faults. The proposed procedure adopts the concepts of discrete event systems and holons, and explores Petri nets and their extensions so as to represent the structure and operation of control systems for intelligent buildings under normal and abnormal situations. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Motoneuron (MN) dendrites may be changed from a passive to an active state by increasing the levels of spinal cord neuromodulators, which activate persistent inward currents (PICs). These exert a powerful influence on MN behavior and modify the motor control both in normal and pathological conditions. Motoneuronal PICs are believed to induce nonlinear phenomena such as the genesis of extra torque and torque hysteresis in response to percutaneous electrical stimulation or tendon vibration in humans. An existing large-scale neuromuscular simulator was expanded to include MN models that have a capability to change their dynamic behaviors depending on the neuromodulation level. The simulation results indicated that the variability (standard deviation) of a maintained force depended on the level of neuromodulatory activity. A force with lower variability was obtained when the motoneuronal network was under a strong influence of PICs, suggesting a functional role in postural and precision tasks. In an additional set of simulations when PICs were active in the dendrites of the MN models, the results successfully reproduced experimental results reported from humans. Extra torque was evoked by the self-sustained discharge of spinal MNs, whereas differences in recruitment and de-recruitment levels of the MNs were the main reason behind torque and electromyogram (EMG) hysteresis. Finally, simulations were also used to study the influence of inhibitory inputs on a MN pool that was under the effect of PICs. The results showed that inhibition was of great importance in the production of a phasic force, requiring a reduced co-contraction of agonist and antagonist muscles. These results show the richness of functionally relevant behaviors that can arise from a MN pool under the action of PICs.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A new control scheme has been presented in this thesis. Based on the NonLinear Geometric Approach, the proposed Active Control System represents a new way to see the reconfigurable controllers for aerospace applications. The presence of the Diagnosis module (providing the estimation of generic signals which, based on the case, can be faults, disturbances or system parameters), mean feature of the depicted Active Control System, is a characteristic shared by three well known control systems: the Active Fault Tolerant Controls, the Indirect Adaptive Controls and the Active Disturbance Rejection Controls. The standard NonLinear Geometric Approach (NLGA) has been accurately investigated and than improved to extend its applicability to more complex models. The standard NLGA procedure has been modified to take account of feasible and estimable sets of unknown signals. Furthermore the application of the Singular Perturbations approximation has led to the solution of Detection and Isolation problems in scenarios too complex to be solved by the standard NLGA. Also the estimation process has been improved, where multiple redundant measuremtent are available, by the introduction of a new algorithm, here called "Least Squares - Sliding Mode". It guarantees optimality, in the sense of the least squares, and finite estimation time, in the sense of the sliding mode. The Active Control System concept has been formalized in two controller: a nonlinear backstepping controller and a nonlinear composite controller. Particularly interesting is the integration, in the controller design, of the estimations coming from the Diagnosis module. Stability proofs are provided for both the control schemes. Finally, different applications in aerospace have been provided to show the applicability and the effectiveness of the proposed NLGA-based Active Control System.