983 resultados para ATOMIC RADII


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A method for the analysis of mussel standard reference material by inductively coupled plasma atomic emission spectrometry( ICP-AES) and inductively coupled plasma mass spectrometry(ICP-MS) was developed. K, Na, Ca, Mg, P, Al, Fe, Zn, Mn and Sr were determined by ICP-AES and As, B, Cd, Co, Cr, Cu, Ga, Ge, Mn, Mo, Ni, Pb, Se, Sr, U and V by ICP-MS, The interference coefficients at the Mn-55, Se-78, Cu-63, Co-59, Ni-58, Ni-60, As-75, Se-77, V-51, Cr-53 and Cr-52 originating from polyatomic ion of the matrix elements (KO)-K-39-O-16, K-39(2), (ArNa)-Ar-40-Na-23, (CaO)-Ca-43-O-16, (CaO)-Ca-42-O-16, (CaO)-Ca-44-O-16, (PO2)-P-31-O-16, (ArCl)-Ar-40-Cl-35, (ArCl)-Ar-40-Cl-37, (ClO)-Cl-35-O-16, (ClO)-Cl-37-O-16 and (ArC)-Ar-40-C-12 were determined under the selected operation parameters. The major matrix elements, such as K, Na and Ca, result in the suppression of analytes signals. The apparent concentration at the significant biological element which was produced by the different digestion methods, (.) HNO3 + H2O2 (3 + 2), HNO3 + HClO4 (3 + 0.5) and HNO3 + H2SO4 (3 + 0.5),was determined. The sample digested by HNO3 + H2O2 did not give rise to interfere on the analyte, and the backgrounds of Se-77, Ga-69, Zn-67, As-75, V-51, Cr-53 and Cr-52 were increased by HNO3 + HClO4 digestion method, that affected the determination of these elements, especially the monoisotope As and V. Sample digested by HNO3 + H2SO4 increased the backgrounds at Cu-65, Zn-64 and Zn-67. Detection limits of ICP-AES are 0.001 similar to 0.75 mg/L and those of ICP-MS are 0.005 similar to 1.01 mu g/L. The relative standard derivations of ICP-AES and ICP-MS are 2.7% similar to 12.8%, 3.4% similar to 24.8%, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of muffin-tin approximation on energy band gap was studied using LMTO-ASA (Linear Muffin-Tin Orbital-Atomic Sphere Approximation) approach. Since the diverse data are available for LaX(X=N, P, As, Sb), they are presented in our research as an example in order to test the reliability of our results. Four groups of muffin-tin radii were chosen, they were the fitted muffin-tin radii based on the optical properties of the crystals (the first), 1 : 1 for La : X(the second), 1.5 : 1 for La : X(the third), and a group of radii derived by making the charge in the interstitial space to be zero(the fourth). The results show that the fitted muffin-tin radii (the first group) give the best results compared with experimental values, and the predicted energy band gaps are very sensitive to the choice of muffin-tin radius in comparison with the other groups. The second and the third delivered results somewhere in between, while the fourth provided the worst results compared with the other groups. For the same crystal, with the increase of muffin-tin radius of lanthanum, the calculated energy band gaps decreased, going from semi-conductor to semimetal. This again clearly indicated the sensitivity of energy band structure on muffin-tin approximation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ordered domain structures were observed by atomic force microscope in dipalmitoylphosphatidycholine monolayer film, which was spread on the subphase of Eu3+ solution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

以Philips-VanVechten理论和晶体光学性质为基础,计算了LaX(X=N,P,As,Sb)晶体的离子半径(单位:nm):(La:N)为(0.1414,0.1236),(La:P)为(0.1518,0.1489),(La:As)为(0.1536,0.1526),(La:Sb)为(0.1586,0.1651).用LMTO-ASA方法对LaX系列晶体的能带结构进行了计算.所得到的能隙是:LaN为2.30eV,LaP为2.05eV,LaAs为1.66eV,LaSb为1.34eV.与实验结果相符.这也证明了作者得到的半径的合理性.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Long-range ordered stripes domain structures were observed in Dipalmitoylphosphatidylcholine (DPPC) Langmuir-Blodgett monolayer film which was spread on the subphase of lanthanide ion (Eu3+) solution and transferred to a freshly cleaved mica substrate by vertical deposition. This novel phenomenon was discussed in terms of the competitive interaction of dipole-dipole and electrostatic interactions of the DPPC molecules combined with lanthanide ions with those DPPC molecules free of lanthanide ions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Effects of some factors on the performance of our Kalman filter in discrimination of closely spaced overlapping signals were investigated. The resolution power of the filter for overlapping lines can be strengthened by reduction of the step size in scans. The minimum peak separation of two lines which the Kalman filter can effectively handle generally equals two to three times the step size in scans. Significant difference between the profiles of the analysis and interfering lines and multiple lines from matrix in the spectral window of the analysis line are very helpful for the Kalman filter to discern closely spaced analysis and interfering signals correctly, which allow the filter well to resolve the line pair with very small peak distance or even the entirely coincident lines.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present paper reports some definite evidence for the significance of wavelength positioning accuracy in multicomponent analysis techniques for the correction of line interferences in inductively coupled plasma atomic emission spectrometry (ICP-AES). Using scanning spectrometers commercially available today, a large relative error, DELTA(A) may occur in the estimated analyte concentration, owing to wavelength positioning errors, unless a procedure for data processing can eliminate the problem of optical instability. The emphasis is on the effect of the positioning error (deltalambda) in a model scan, which is evaluated theoretically and determined experimentally. A quantitative relation between DELTA(A) and deltalambda, the peak distance, and the effective widths of the analysis and interfering lines is established under the assumption of Gaussian line profiles. The agreement between calculated and experimental DELTA(A) is also illustrated. The DELTA(A) originating from deltalambda is independent of the net analyte/interferent signal ratio; this contrasts with the situation for the positioning error (dlambda) in a sample scan, where DELTA(A) decreases with an increase in the ratio. Compared with dlambda, the effect of deltalambda is generally less significant.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present paper deals with the evaluation of the relative error (DELTA(A)) in estimated analyte concentrations originating from the wavelength positioning error in a sample scan when multicomponent analysis (MCA) techniques are used for correcting line interferences in inductively coupled plasma atomic emission spectrometry. In the theoretical part, a quantitative relation of DELTA(A) with the extent of line overlap, bandwidth and the magnitude of the positioning error is developed under the assumption of Gaussian line profiles. The measurements of eleven samples covering various typical line interferences showed that the calculated DELTA(A) generally agrees well with the experimental one. An expression of the true detection limit associated with MCA techniques was thus formulated. With MCA techniques, the determination of the analyte and interferent concentrations depend on each other while with conventional correction techniques, such as the three-point method, the estimate of interfering signals is independent of the analyte signals. Therefore. a given positioning error results in a larger DELTA(A) and hence a higher true detection limit in the case of MCA techniques than that in the case of conventional correction methods. although the latter could be a reasonable approximation of the former when the peak distance expressed in the effective width of the interfering line is larger than 0.4. In the light of the effect of wavelength positioning errors, MCA techniques have no advantages over conventional correction methods unless the former can bring an essential reduction ot the positioning error.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Correction of spectral overlap interference in inductively coupled plasma atomic emission spectrometry by factor analysis is attempted. For the spectral overlap of two known lines, a data matrix can be composed from one or two pure spectra and a spectrum of the mixture. The data matrix is decomposed into a spectra matrix and a concentration matrix by target transformation factor analysis. The component concentration of interest in a binary mixture is obtained from the concentration matrix and interference from the other component is eliminated. This method is applied to correcting spectral interference of yttrium on the determination of copper and aluminium: satisfactory results are obtained. This method may also be applied to correcting spectral overlap interference for more than two lines. Like other methods of correcting spectral interferences, factor analysis can only be used for additive spectral overlap. Results obtained from measurements on copper/yttrium mixtures with different white noise added show that random errors in measurement data do not significantly affect the results of the correction method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Kalman filter was developed for resolving overlapping lines in inductively coupled plasma atomic emission spectrometry (ICP-AES) and evaluated experimentally with the determination of La in the presence of Ho, and Cu in the presence of Pr. The whiteness of the innovation sequence for an optimal filter was explored to be the criterion for the correction of the wavelength positioning errors which may occur in spectral scans. Under the conditions of the medium-resolution spectrometer and 1.5 pm step size in scans, the filter effectively resolved the Cu/Pr line pair having a small peak separation of 4.8 pm. For the La/Ho line pair with a peak distance of 9.8 pm, an unbiased estimate for La concentration was still obtained even when the signal-to-background ratio was down to 0.048. Favourable detection limits for real samples were achieved. Unstructured backgrounds were modeled theoretically and all spectral scans therefore did not require the correction for solvent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper deals with the evaluation of the reliability of the analytical results obtained by Kalman filtering. Two criteria for evaluation were compared: one is based on the autocorrelation analysis of the innovation sequence, the so-called NAC criterion; the other is the innovations number, which actually is the autocorrelation coefficient of the innovation sequence at the initial wavelength. Both criteria allow compensation for the wavelength positioning errors in spectral scans, but there exists a difference in the way they work. The NAC criterion can provide information about the reliability of an individual result, which is very useful for the indication of unmodelled emissions, while the innovations number should be incorporated with the normalization of the innovations or seek the help of the sequence itself for the same purpose. The major limitation of the NAC criterion is that it does not allow the theoretical modelling of continuous backgrounds, which, however, is convenient in practical analysis and can be taken with the innovations number criterion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of least-squres polynomial smoothing in ICP-AES is discussed and a method of points insertion into spectral scanning intervals is proposed in the present paper. Optimal FWHM/SR ratio can be obtained, and distortion of smoothed spectra can be avoided by use of the recommended method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work evaluates the effect of wavelength positioning errors in spectral scans on analytical results when the Kalman filtering technique is used for the correction of line interferences in inductively coupled plasma atomic emission spectrometry (ICP-AES). The results show that a positioning accuracy of 0.1 pm is required in order to obtain accurate and precise estimates for analyte concentrations. The positioning error in sample scans is more crucial than that in model scans. The relative bias in measured analyte concentration originating from a positioning error in a sample scan increases linearly with an increase in the magnitude of the error and the peak distance of the overlapping lines, but is inversely proportional to the signal-to-background ratio. By the use of an optimization procedure for the positions of scans with the innovations number as the criterion, the wavelength positioning error can be reduced and, correspondingly, the accuracy and precision of analytical results improved.