944 resultados para ASYMMETRIC ALTERNATING COPOLYMERIZATION
Resumo:
To investigate the regulation NREM sleep at baseline and in morning recovery sleep after partial and total sleep deprivation (SD) in narcolepsy-cataplexy (NC) using cyclic alternating pattern (CAP).
Resumo:
Rotary blood pumps (RBPs) running at a constant speed are routinely used for the mechanical support of the heart in various clinical applications, from short-term use in heart-lung machines to long-term support of a failing heart. Their operating range is delineated by suction and regurgitation events, leaving limited control on the cardiac workload. This study investigates whether different ratios of systolic/diastolic support are advantageous over a constant-speed operation.
Resumo:
INTRODUCTION: This case report describes the anaesthetic management of exploratory thoracoscopy and alternating one lung ventilation (OLV) in a dog with a pulmonary bulla, and the application of continuous positive airway pressure (CPAP) to the non-ventilated lung for preventing and treating hypoxia. CASE HISTORY: A 6-year-old, male castrated Border collie was scheduled for exploratory thoracoscopy to investigate spontaneous pnemothorax that had not resolved with repeated suction. Specific requirements for the thoracoscopy were alternating OLV to allow the surgical access to the right middle lobe and its removal, and the examination of the left hemithorax to rule out the presence of other lesions. DIAGNOSIS AND MANAGEMENT: Selective lung ventilation was performed with a double lumen endobronchial tube (DLT), inserted under endoscopic guidance. After a short period of two lung ventilation during preparation of the surgical field, alternating OLV was performed, combining CPAP, provided to the non-ventilated lung via a Mapleson D breathing system, and positive end-expiratory pressure (PEEP) applied to the ventilated lung. Left OLV occurred first and resection of the right middle pulmonary lobe was successfully performed; right OLV followed to allow the examination of the left hemithorax. DISCUSSION AND CONCLUSIONS: The combination of CPAP and PEEP resulted in a satisfactory intra-operative management of hypoxemia. Alternating OLV can be performed successfully by using a DLT. CPAP, commonly employed in human medicine, should be considered an important tool in the anaesthetic management of OLV in small animals.
Resumo:
Theoretical models predict that parents should adjust the amount of care both to their own and their partner's body condition. In most biparental species, parental duties are switched repeatedly allowing for repeated mutual adjustment of the amount of care. In the mouthbrooding cichlid Eretmodus cyanostictus, terms are switched only once with females taking the first share. The timing of the shift of the clutch between mates strongly determines both partners' brooding period and thereby their parental investment. Females signal their readiness to transfer the young several days before the male finally takes them, suggesting sexual conflict over the timing of the shift. In a lab experiment, we reduced the body condition of either the female or the male of a pair to test whether energy reserves affect the timing of the shift and whether female signalling behaviour depends on energetic state. Males with a lowered condition took the young later and incubated for a shorter period, which prolonged the incubation time of their female partners. When female condition was lowered, female and male incubation durations remained unchanged, although females signalled their readiness to shift more intensely. Our results suggest that males adjust their parental investment to own energy reserves but are unresponsive to their mate's condition. Females appear to carry the entire costs for the male's adjustment of care. We propose that intrinsic asymmetries in the scope for mutual adjustment of parental investment and the costs of negotiation crucially influence solutions of the conflict between sexes over care.
Resumo:
This thesis evaluates a novel asymmetric capacitor incorporating a carbon foam supported nickel hydroxide positive electrode and a carbon black negative electrode. A series of symmetric capacitors were prepared to characterize the carbon black (CB) negative electrode. The influence of the binder, PTFE, content on the cell properties was evaluated. X-ray diffraction characterization of the nickel electrode during cycling is also presented. The 3 wt% and 5 wt% PTFE/CB symmetric cells were examined using cyclic voltammetry (CV) and constant current charge/discharge measurements. As compared with symmetric cells containing more PTFE, the 3 wt% cell has the highest average specific capacitance, energy density and power density over 300 cycles, 121.8 F/g, 6.44 Wh/kg, and 604.1 W/kg, respectively. Over the 3 to 10 wt% PTFE/CB range, the 3 wt% sample exhibited the lowest effective resistance and the highest BET surface area. Three asymmetric cells (3 wt% PTFE/CB negative electrode and a nickel positive) were fabricated; cycle life was examined at 3 current densities. The highest average energy and power densities over 1000 cycles were 20 Wh/kg (21 mA/cm2) and 715 W/kg (31 mA/cm2), respectively. The longest cycle life was 11,505 cycles (at 8 mA/cm2), with an average efficiency of 79% and an average energy density of 14 Wh/kg. The XRD results demonstrate that the cathodically deposited nickel electrode is a typical α-Ni(OH)2 with the R3m structure (ABBCCA stacking); the charged electrodes are 3γ-NiOOH with the same stacking as the α-type; the discharged electrodes (including as-formed electrode) are aged to β’-Ni(OH)2 (a disordered β) with the P3m structure (ABAB stacking). A 3γ remnant was observed.
Resumo:
A new series of chiral ferrosalen ligands was designed and synthesized. The special feature of the ferrosalen ligands is that the chirality originated from the planar chiral ferrocenyl structure. For most known salen ligands, chirality comes from central and axial chiral centers. The key building block for the construction of these ferrosalen ligands was synthesized stereoselectively by a chiral auxiliary approach. This approach does not consume any chiral material, and does not require chiral HPLC resolution. Using this method, nine ligands were prepared using ferrocene as the starting material. In addition, the steric hindrance was modulated by changing the cyclopentadienyl group to the more bulky pentamethylcyclopentadienyl- and pentaphenylcyclopentadienyl- groups. The structure of these ligands was established by 1H and 13C NMR. The structure of a ferrosalen-Cu (II) complex was determined by single crystal X-ray diffraction analysis. All the chiral ferrosalen ligands were tested in catalytic asymmetric reactions including enantioselective carbonyl-ene reaction, enantioselective Strecker-type reaction and enantioselective silylcyanation. For the carbonyl-ene reaction, up to 99% yield and 29% enantiomeric excess (ee) were obtained using ligand-Co (III) as the catalysts; For the Strecker-type reaction, a maximum of 20% ee was obtained using ligand-AlCl as the catalyst; For the silylcyanation reaction, up to 99% yield and 26% ee were obtained using ligand-AlCl as the catalyst.
Resumo:
Electrochemical capacitors (ECs), also known as supercapacitors or ultracapacitors, are energy storage devices with properties between batteries and conventional capacitors. EC have evolved through several generations. The trend in EC is to combine a double-layer electrode with a battery-type electrode in an asymmetric capacitor configuration. The double-layer electrode is usually an activated carbon (AC) since it has high surface area, good conductivity, and relatively low cost. The battery-type electrode usually consists of PbO2 or Ni(OH)2. In this research, a graphitic carbon foam was impregnated with Co-substituted Ni(OH)2 using electrochemical deposition to serve as the positive electrode in the asymmetric capacitor. The purpose was to reduce the cost and weight of the ECs while maintaining or increasing capacitance and gravimetric energy storage density. The XRD result indicated that the nickel-carbon foam electrode was a typical α-Ni(OH)2. The specific capacitance of the nickel-carbon foam electrode was 2641 F/g at 5 mA/cm2, higher than the previously reported value of 2080 F/g for a 7.5% Al-substituted α-Ni(OH)2 electrode. Three different ACs (RP-20, YP-50F, and Ketjenblack EC-600JD) were evaluated through their morphology and electrochemical performance to determine their suitability for use in ECs. The study indicated that YP-50F demonstrated the better overall performance because of the combination of micropore and mesopore structures. Therefore, YP-50F was chosen to combine with the nickel-carbon foam electrode for further evaluation. Six cells with different mass ratios of negative to positive active mass were fabricated to study the electrochemical performance. Among the different mass ratios, the asymmetric capacitor with the mass ratio of 3.71 gave the highest specific energy and specific power, 24.5 W.h/kg and 498 W/kg, respectively.
Resumo:
Electrochemical capacitors have been an important development in recent years in the field of energy storage. Capacitors can be developed by utilizing either double layer capacitance at the electrode/solution interfaces alone or in combination with a battery electrode associated with a faradic redox process in one electrode. An asymmetric capacitor consisting of electrochemically deposited nickel hydroxide, supported on carbon foam as a positive electrode and carbon sheet as a negative electrode has been successfully assembled and cycled. One objective of this study has been to demonstrate the viability of the nickel carbon foam positive electrode, especially in terms of cycle life. Electrochemical characterization shows stable, high cycle performance in 26 wt. % KOH electrolyte with a maximum energy density of 4.1 Wh/Kg and a relaxation time constant of 6.24 s. This cell has demonstrated high cycle life, 14,500 cycles, with efficiency better than 98%. In addition, the cell failure mechanism and self-discharge behavior of the aforesaid capacitor are analyzed.
Resumo:
Nanoparticles are fascinating where physical and optical properties are related to size. Highly controllable synthesis methods and nanoparticle assembly are essential [6] for highly innovative technological applications. Among nanoparticles, nonhomogeneous core-shell nanoparticles (CSnp) have new properties that arise when varying the relative dimensions of the core and the shell. This CSnp structure enables various optical resonances, and engineered energy barriers, in addition to the high charge to surface ratio. Assembly of homogeneous nanoparticles into functional structures has become ubiquitous in biosensors (i.e. optical labeling) [7, 8], nanocoatings [9-13], and electrical circuits [14, 15]. Limited nonhomogenous nanoparticle assembly has only been explored. Many conventional nanoparticle assembly methods exist, but this work explores dielectrophoresis (DEP) as a new method. DEP is particle polarization via non-uniform electric fields while suspended in conductive fluids. Most prior DEP efforts involve microscale particles. Prior work on core-shell nanoparticle assemblies and separately, nanoparticle characterizations with dielectrophoresis and electrorotation [2-5], did not systematically explore particle size, dielectric properties (permittivity and electrical conductivity), shell thickness, particle concentration, medium conductivity, and frequency. This work is the first, to the best of our knowledge, to systematically examine these dielectrophoretic properties for core-shell nanoparticles. Further, we conduct a parametric fitting to traditional core-shell models. These biocompatible core-shell nanoparticles were studied to fill a knowledge gap in the DEP field. Experimental results (chapter 5) first examine medium conductivity, size and shell material dependencies of dielectrophoretic behaviors of spherical CSnp into 2D and 3D particle-assemblies. Chitosan (amino sugar) and poly-L-lysine (amino acid, PLL) CSnp shell materials were custom synthesized around a hollow (gas) core by utilizing a phospholipid micelle around a volatile fluid templating for the shell material; this approach proves to be novel and distinct from conventional core-shell models wherein a conductive core is coated with an insulative shell. Experiments were conducted within a 100 nl chamber housing 100 um wide Ti/Au quadrapole electrodes spaced 25 um apart. Frequencies from 100kHz to 80MHz at fixed local field of 5Vpp were tested with 10-5 and 10-3 S/m medium conductivities for 25 seconds. Dielectrophoretic responses of ~220 and 340(or ~400) nm chitosan or PLL CSnp were compiled as a function of medium conductivity, size and shell material.
ALTERNATING CURRENT DIELECTROPHORETIC MANIPULATION OF ERYTHROCYTES IN MEDICAL MICRODEVICE TECHNOLOGY
Resumo:
Medical microdevices have gained popularity in the past few decades because they allow the medical laboratory to be taken out into the field and for disease diagnostics to happen with a smaller sample volume, at a lower cost and much faster. Blood is the human body's most readily available and informative diagnostic fluid because of the wealth of information it provides about the body's general health including enzymatic, proteomic and immunological states. The purpose of this project is to optimize operating conditions and study ABO-Rh erythrocytes dielectrophoretic responses to alternating current electric signals. The end goal of this project is the creation of a relatively inexpensive microfluidic device, which can be used for the ABO-Rh typing of a blood sample. This dissertation presents results showing how blood samples of a known ABO- Rh blood type exhibit differing behavior to the same electrical stimulus based on their blood type. The first panel of donors and experiments, presented in Chapter 4 occurred when a sample of known blood type was injected into a microdevice with a T-shaped electrode configuration and the erythorcytes were found to rupture at a rate specific to their ABO-Rh blood type. The second set of experiments, presented in Chapter 5, were originally published in Electrophoresis in 20111. Novel in this work was the discovery that treatment of human erythrocytes with β-galactosidase successfully removed ABO surface antigens such that native A and B blood no longer agglutinated with the proper antibodies. This work was performed in a medium of conductivity 0.9S/m which is close to the measured conductivity of pooled plasma (~1.1S/m). The ability to perform dielectrophoresis experiments at physiological conductivities conditions is advantageous for future portable devices because the device/instrument would not need to store dilution buffers. The final results of this project, presented in Chapter 6, explore the entire dielectrophoretic spectra of the ABO-Rh erythrocytes including the cross-over frequency and the magnitudes of the positive or negative dielectrophoretic response. These were completed at lower medium conductivities of 0.1S/m and 0.01-0.04S/m. These results show that by using the sweep function built into the Agilent alternating current generator it is possible to explore how a single group of blood cells will react to rapid changes in frequency and will provide the user with curve that can be matched the theoretical dielectrophoretic response curves. As a whole this project shows that it is possible to distinguish human erythrocytes by their ABO-Rh blood type via three different dielectrophoretic methods. This work builds on the foundation of that it is possible to distinguish healthy from infected cells2-7, similar cell types1,7-14 and other work regarding the dielectrophoresis of human erythrocytes1,10,11. This work has implications in both medical diagnostics and future dielectrophoretic work because it has shown that ABO-Rh blood type is now a factor, which must be identified when working with a human blood sample. It also shows that the creation of a microfluidic device that subjects human erythrocytes to a dielectrophoretic impulse and then exports an ABO-Rh blood type is a near future possibility.