955 resultados para ARDS, acute lung injury, IL-17, lymphocyte, ILC3, pILC


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Sevoflurane exerts effects on pulmonary cells that could protect against lung injury. We evaluated the potential of pretreatment with sevoflurane to attenuate lipopolysaccharide (LPS)-induced lung injury. Methods: LPS was administered intratracheally in Wistar rats to induce lung injury. Sevoflurane was administered for 30 min at 0.25, 0.5 or 1.0 MAC 15 min before LPS or for 30min at 0.5 MAC 24 hours before LPS. After initial analysis of bronchoalveolar lavage fluid (BALF) cells and total protein, the group of 0.5 MAC 15min before LPS was further analyzed for surfactant aggregates subfractions, plasma malondialdehyde levels and lung histology. Results: LPS instillation resulted in neutrophils sequestration in the lungs, loss of alveolar macrophages, increased BALF total protein and decreased large surfactant aggregates. Only inhalation of sevoflurane for 30min at 0.5 MAC 15min before LPS installation effectively reduced neutrophil accumulation, preserved alveolar epithelial cells and reduced total protein content in BALF. This regimen also reduced plasma malondialdehyde levels and increased large surfactant aggregates, despite the application of mechanical ventilation. This effect was preserved after LPS instillation and the favorable composition of surfactant was maintained. Conclusions: Pretreatment with sevoflurane effectively attenuates direct severe lung injury, possibly by inhibition of neutrophil accumulation and alteration of the surfactant composition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND No reliable tool to predict outcome of acute kidney injury (AKI) exists. HYPOTHESIS A statistically derived scoring system can accurately predict outcome in dogs with AKI managed with hemodialysis. ANIMALS One hundred and eighty-two client-owned dogs with AKI. METHODS Logistic regression analyses were performed initially on clinical variables available on the 1st day of hospitalization for relevance to outcome. Variables with P< or = .1 were considered for further analyses. Continuous variables outside the reference range were divided into quartiles to yield quartile-specific odds ratios (ORs) for survival. Models were developed by incorporating weighting factors assigned to each quartile based on the OR, using either the integer value of the OR (Model A) or the exact OR (Models B or C, when the etiology was known). A predictive score for each model was calculated for each dog by summing all weighting factors. In Model D, actual values for continuous variables were used in a logistic regression model. Receiver-operating curve analyses were performed to assess sensitivities, specificities, and optimal cutoff points for all models. RESULTS Higher scores were associated with decreased probability of survival (P < .001). Models A, B, C, and D correctly classified outcomes in 81, 83, 87, and 76% of cases, respectively, and optimal sensitivities/specificities were 77/85, 81/85, 83/90 and 92/61%, respectively. CONCLUSIONS AND CLINICAL RELEVANCE The models allowed outcome prediction that corresponded with actual outcome in our cohort. However, each model should be validated further in independent cohorts. The models may also be useful to assess AKI severity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND Acute kidney injury (AKI) is common in dogs. Few studies have assessed sequential changes in indices of kidney function in dogs with naturally occurring AKI. OBJECTIVE To document sequential changes of conventional indices of renal function, to better define the course of AKI, and to identify a candidate marker for recovery. ANIMALS Ten dogs with AKI. METHODS Dogs were prospectively enrolled and divided into surviving and nonsurviving dogs. Urine production was measured with a closed system for 7 days. One and 24-hour urinary clearances were performed daily to estimate solute excretion and glomerular filtration rate (GFR). Solute excretion was calculated as an excretion ratio (ER) and fractional clearance (FC) based on both the 1- and 24-hour urine collections. RESULTS Four dogs survived and 6 died. At presentation, GFR was not significantly different between the outcome groups, but significantly (P = .03) increased over time in the surviving, but not in the nonsurviving dogs. Fractional clearance of Na decreased significantly over time (20.2-9.4%, P < .0001) in the surviving, but not in the nonsurviving dogs. The ER and FC of solutes were highly correlated (r, 0.70-0.95). CONCLUSION AND CLINICAL IMPACT Excretion ratio might be used in the clinical setting as a surrogate marker to follow trends in solute excretion. Increased GFR, urine production, and decreased FC of Na were markers of renal recovery. The FC of Na is a simple, noninvasive, and cost-effective method that can be used to evaluate recovery of renal function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Idiopathic pulmonary fibrosis (IPF) and bleomycin-induced pulmonary fibrosis are associated with surfactant system dysfunction, alveolar collapse (derecruitment), and collapse induration (irreversible collapse). These events play undefined roles in the loss of lung function. The purpose of this study was to quantify how surfactant inactivation, alveolar collapse, and collapse induration lead to degradation of lung function. Design-based stereology and invasive pulmonary function tests were performed 1, 3, 7, and 14 days after intratracheal bleomycin-instillation in rats. The number and size of open alveoli was correlated to mechanical properties. Active surfactant subtypes declined by Day 1, associated with a progressive alveolar derecruitment and a decrease in compliance. Alveolar epithelial damage was more pronounced in closed alveoli compared with ventilated alveoli. Collapse induration occurred on Day 7 and Day 14 as indicated by collapsed alveoli overgrown by a hyperplastic alveolar epithelium. This pathophysiology was also observed for the first time in human IPF lung explants. Before the onset of collapse induration, distal airspaces were easily recruited, and lung elastance could be kept low after recruitment by positive end-expiratory pressure (PEEP). At later time points, the recruitable fraction of the lung was reduced by collapse induration, causing elastance to be elevated at high levels of PEEP. Surfactant inactivation leading to alveolar collapse and subsequent collapse induration might be the primary pathway for the loss of alveoli in this animal model. Loss of alveoli is highly correlated with the degradation of lung function. Our ultrastructural observations suggest that collapse induration is important in human IPF.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Maleic acid (MA) is a common component of descaling products and is widely used in daily life. Accidental ingestion in relevant amounts does not play a major role in human beings; however, it seems to be highly toxic for dogs. It has been commonly used experimentally to induce Fanconi syndrome in dogs or small rodents. Two dogs were presented for acute kidney injury (AKI) after accidental ingestion of a descaling agent containing MA at an estimated amount of 70 mg/kg each. The third dog involved was euthanased by the referring veterinarian, and postmortem pathological analysis revealed severe acute tubular necrosis consistent with toxic nephropathy. The other dogs received symptomatic therapy for AKI including treatment with haemodialysis and showed complete normalisation of serum creatinine at a follow-up after five months. Renal damage can be very severe, but seems to be at least partially reversible and an attempt to treatment is warranted.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Monoclonal antibodies (mAbs) inhibiting cytokines have recently emerged as new drug modalities for the treatment of chronic inflammatory diseases. Interleukin-17 (IL-17) is a T-cell-derived central mediator of autoimmunity. Immunization with Qβ-IL-17, a virus-like particle based vaccine, has been shown to produce autoantibodies in mice and was effective in ameliorating disease symptoms in animal models of autoimmunity. To characterize autoantibodies induced by vaccination at the molecular level, we generated mouse mAbs specific for IL-17 and compared them to germline Ig sequences. The variable regions of a selected hypermutated high-affinity anti-IL-17 antibody differed in only three amino acid residues compared to the likely germline progenitor. An antibody, which was backmutated to germline, maintained a surprisingly high affinity (0.5 nM). The ability of the parental hypermutated antibody and the derived germline antibody to block inflammation was subsequently tested in murine models of multiple sclerosis (experimental autoimmune encephalomyelitis), arthritis (collagen-induced arthritis), and psoriasis (imiquimod-induced skin inflammation). Both antibodies were able to delay disease onset and significantly reduced disease severity. Thus, the mouse genome unexpectedly encodes for antibodies with the ability to functionally neutralize IL-17 in vivo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chronic inflammation leading to pulmonary fibrosis develops in response to environmental pollutants, radiotherapy, or certain cancer chemotherapeutic agents. Studies have shown that several cell types accumulate during the inflammatory process, but little information is known about what actually triggers and stimulates persistent inflammation culminating in fibrosis. As a first step in defining the events that precipitate inflammation in the lung, the biological mechanism(s) mediating apoptosis and cellular targets must be identified. The purpose of this study was to determine the molecular mechanism(s) of bleomycin-induced apoptosis in the lung using mice deficient in genes that we hypothesized to play a key role in apoptosis. Intratracheal administration of bleomycin led to caspase-mediated DNA fragmentation characteristic of apoptosis. The effects of bleomycin were associated with translocation of p53 from the cytosol to the nucleus only in alveolar macrophages that had been exposed to the drug in vivo, suggesting that the lung microenvironment regulated p53 activation. Experiments with a thiol antioxidant (N-acetylcysteine) in vivo and nitric oxide donors in vitro confirmed that reactive oxygen species were required for p53 activation. A specific role for NO was demonstrated in experiments with iNOS−/− macrophages, which failed to demonstrate nuclear p53 localization after in vivo bleomycin exposure. Strikingly, rates of bleomycin-induced apoptosis were at least two-fold higher in iNOS−/− and p53−/− C57BL/6 mice compared to wild-type controls. Laser Scanning Cytometry (LSC) analysis revealed that bleomycin exposure resulted in a 2-fold induction in Fas and FasL expression in wild-type mice but not iNOS−/− or p53−/− mice. Experiments using gld mice confirmed that the Fas/FasL pathway was the primary mechanism of bleomycin-induced apoptosis in the lung. LSC-mediated analysis indicated that bleomycin exposure resulted in a 2-fold induction in Bax expression in iNOS−/− and P53−/− mice but not wild-type mice. Furthermore, LSC analysis revealed that bleomycin exposure induced a 3-fold increase in thrombospondin expression in wild-type mice. However, thrombospondin was not expressed in either the iNOS−/− or p53−/− mice, implicating a thrombospondin-mediated apoptotic cell clearance mechanism in the lung. Together, these results demonstrate that iNOS and p53 positively regulate apoptosis via the Fas/FasL pathway and mediate a novel apoptosis-suppressing pathway in the lung. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nrf2 is a member of the “cap ‘n’ collar” family of transcription factors. These transcription factors bind to the NF-E2 binding sites (GCTGAGTCA) that are essential for the regulation of erythroid-specific genes. Nrf2 is expressed in a wide range of tissues, many of which are sites of expression for phase 2 detoxification genes. Nrf2−/− mice are viable and have a normal phenotype under normal laboratory conditions. The NF-E2 binding site is a subset of the antioxidant response elements that have the sequence GCNNNGTCA. The antioxidant response elements are regulatory sequences found on promoters of several phase 2 detoxification genes that are inducible by xenobiotics and antioxidants. We report here that Nrf2−/− mice are extremely susceptible to the administration of the antioxidant butylated hydroxytoluene. With doses of butylated hydroxytoluene that are tolerated by wild-type mice, the Nrf2−/− mice succumb from acute respiratory distress syndrome. Gene expression studies show that the expression of several detoxification enzymes is altered in the Nrf2−/− mice. The Nrf2−/− mice may prove to be a good in vivo model for toxicological studies. As oxidative damage causes DNA breakage, these mice may also be useful for testing carcinogenic agents.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ACKNOWLEDGEMENTS We acknowledge the data management support of Grampian Data Safe Haven (DaSH) and the associated financial support of NHS Research Scotland, through NHS Grampian investment in the Grampian DaSH. S.S. is supported by a Clinical Research Training Fellowship from the Wellcome Trust (Ref 102729/Z/13/Z). We also acknowledge the support from The Farr Institute of Health Informatics Research. The Farr Institute is supported by a 10-funder consortium: Arthritis Research UK, the British Heart Foundation, Cancer Research UK, the Economic and Social Research Council, the Engineering and Physical Sciences Research Council, the Medical Research Council, the National Institute of Health Research, the National Institute for Social Care and Health Research (Welsh Assembly Government), the Chief Scientist Office (Scottish Government Health Directorates) and the Wellcome Trust (MRC Grant Nos: Scotland MR/K007017/1).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mechanisms responsible for the induction of matrix-degrading proteases during lung injury are ill defined. Macrophage-derived mediators are believed to play a role in regulating synthesis and turnover of extracellular matrix at sites of inflammation. We find a localized increase in the expression of the rat interstitial collagenase (MMP-13; collagenase-3) gene from fibroblastic cells directly adjacent to macrophages within silicotic rat lung granulomas. Conditioned medium from macrophages isolated from silicotic rat lungs was found to induce rat lung fibroblast interstitial collagenase gene expression. Conditioned medium from primary rat lung macrophages or J774 monocytic cells activated by particulates in vitro also induced interstitial collagenase gene expression. Tumor necrosis factor-α (TNF-α) alone did not induce interstitial collagenase expression in rat lung fibroblasts but did in rat skin fibroblasts, revealing tissue specificity in the regulation of this gene. The activity of the conditioned medium was found to be dependent on the combined effects of TNF-α and 12-lipoxygenase-derived arachidonic acid metabolites. The fibroblast response to this conditioned medium was dependent on de novo protein synthesis and involved the induction of nuclear activator protein-1 activity. These data reveal a novel requirement for macrophage-derived 12-lipoxygenase metabolites in lung fibroblast MMP induction and provide a mechanism for the induction of resident cell MMP gene expression during inflammatory lung processes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The origin and role of IL-17, a T-cell derived cytokine, in cartilage and bone destruction during rheumatoid arthritis (RA) remain to be clarified. In human ex vivo models, addition of IL-17 enhanced IL-6 production and collagen destruction, and inhibited collagen synthesis by RA synovium explants. On mouse cartilage, IL-17 enhanced cartilage proteoglycan loss and inhibited its synthesis. On human RA bone explants, IL-17 also increased bone resorption and decreased formation. Addition of IL-1 in these conditions increased the effect of IL-17. Blocking of bone-derived endogenous IL-17 with specific inhibitors resulted in a protective inhibition of bone destruction. Conversely, intra-articular administration of IL-17 into a normal mouse joint induced cartilage degradation. In conclusion, the contribution of IL-17 derived from synovium and bone marrow T cells to joint destruction suggests the control of IL-17 for the treatment of RA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND Apoptosis is a key mechanism involved in ischemic acute kidney injury (AKI), but its role in septic AKI is controversial. Biomarkers indicative of apoptosis could potentially detect developing AKI prior to its clinical diagnosis. METHODS As a part of the multicenter, observational FINNAKI study, we performed a pilot study among critically ill patients who developed AKI (n = 30) matched to critically ill patients without AKI (n = 30). We explored the urine and plasma levels of cytokeratin-18 neoepitope M30 (CK-18 M30), cell-free DNA, and heat shock protein 70 (HSP70) at intensive care unit (ICU) admission and 24h thereafter, before the clinical diagnosis of AKI defined by the Kidney Disease: Improving Global Outcomes -creatinine and urine output criteria. Furthermore, we performed a validation study in 197 consecutive patients in the FINNAKI cohort and analyzed the urine sample at ICU admission for CK-18 M30 levels. RESULTS In the pilot study, the urine or plasma levels of measured biomarkers at ICU admission, at 24h, or their maximum value did not differ significantly between AKI and non-AKI patients. Among 20 AKI patients without severe sepsis, the urine CK-18 M30 levels were significantly higher at 24h (median 116.0, IQR [32.3-233.0] U/L) than among those 20 patients who did not develop AKI (46.0 [0.0-54.0] U/L), P = 0.020. Neither urine cell-free DNA nor HSP70 levels significantly differed between AKI and non-AKI patients regardless of the presence of severe sepsis. In the validation study, urine CK-18 M30 level at ICU admission was not significantly higher among patients developing AKI compared to non-AKI patients regardless of the presence of severe sepsis or CKD. CONCLUSIONS Our findings do not support that apoptosis detected with CK-18 M30 level would be useful in assessing the development of AKI in the critically ill. Urine HSP or cell-free DNA levels did not differ between AKI and non-AKI patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES Cardiac involvement in the course of acute kidney injury is described in humans as cardiorenal syndrome type 3 but has received only limited attention in dogs. This study was designed to evaluate cardiac injury and dysfunction in acute kidney injury in dogs and its association with outcome. METHODS This prospective cohort study enrolled 24 client-owned dogs with acute kidney injury. Cardiac disorders were evaluated with thoracic radiographs, echocardiography, 24-hour Holter monitoring and cardiac troponin I concentrations within 2 days of admission and 7 to 10 days later. RESULTS Most dogs were diagnosed with leptospirosis (n=18, 75%) and presented with moderate-to-severe acute kidney injury, International Renal Interest Society grades III to V. Dogs with ê100 ventricular premature complexes per 24 hour in the first examination (n=8) had significantly higher initial cTnI concentrations (P=0·007) compared to dogs with fewer than 100. In receiver operating characteristic curve analysis, the number of ventricular premature complexes was predictive of outcome (AUC 0·83, P<0·001). CLINICAL SIGNIFICANCE Acute kidney injury seems to be associated with cardiac injury and arrhythmias in dogs. The data do not indicate a cardiac cause of poor outcome in dogs with increased number of ventricular premature complexes but the association may reflect the severity of disease.