807 resultados para ALZHEIMER-DISEASE
Resumo:
Autism and Alzheimer's disease (AD) are, respectively, neurodevelopmental and degenerative diseases with an increasing epidemiological burden. The AD-associated amyloid-beta precursor protein-alpha has been shown to be elevated in severe autism, leading to the 'anabolic hypothesis' of its etiology. Here we performed a focused microarray analysis of genes belonging to NOTCH and WNT signaling cascades, as well as genes related to AD and apoptosis pathways in cerebellar samples from autistic individuals, to provide further evidence for pathological relevance of these cascades for autism. By using the limma package from R and false discovery rate, we demonstrated that 31% (116 out of 374) of the genes belonging to these pathways displayed significant changes in expression (corrected P-values <0.05), with mitochondria- related genes being the most downregulated. We also found upregulation of GRIN1, the channel-forming subunit of NMDA glutamate receptors, and MAP3K1, known activator of the JNK and ERK pathways with anti-apoptotic effect. Expression of PSEN2 (presinilin 2) and APBB1 (or F65) were significantly lower when compared with control samples. Based on these results, we propose a model of NMDA glutamate receptor-mediated ERK activation of alpha-secretase activity and mitochondrial adaptation to apoptosis that may explain the early brain overgrowth and disruption of synaptic plasticity and connectome in autism. Finally, systems pharmacology analyses of the model that integrates all these genes together (NOWADA) highlighted magnesium (Mg2+) and rapamycin as most efficient drugs to target this network model in silico. Their potential therapeutic application, in the context of autism, is therefore discussed.
Resumo:
Cyclooxygenase-2 (COX-2, encoded by the gene prostaglandin-endoperoxide synthase 2, PTGS2) is a key enzyme in the conversion of arachidonic acid to prostaglandins. The prostaglandins produced by COX-2 are involved in inflammation and pain response in diff
Resumo:
Background: Alzheimer's disease (AD) is a neurodegenerative disease with a higher prevalence in women. Expression of estrogen receptor 1 (ESR1) gene has been identified throughout the brain. Owing to the putative neuroprotective effects of estrogen, estro
Resumo:
Alzheimer’s disease (AD) is an incurable neurodegenerative disorder, accounting for over 60% of all cases of dementia. The primary risk factor for AD is age, however several genetic and environmental factors are also involved. The pathological characteristics of AD include extracellular deposition of the beta-amyloid peptide (Aβ) and intraneuronal accumulation of neurofibrillary tangles (NFTs) made of aggregated paired helical filaments (PHFs) of the hyperphosphorylated tau protein, along with synaptic loss and neuronal death. There are numerous biochemical mechanisms involved in AD pathogenesis, however the reigning hypothesis points to toxic oligomeric Aβ species as the primary causative factor in a cascade of events leading to neuronal stress and dyshomeostasis that initiate abnormal regulation of tau. The insulin and IGF-1 receptors (IR, IGF-1R) are the primary activators of PI3- K/Akt through which they regulate cell growth, development, glucose metabolism, and learning and memory. Work in our lab and others shows increased Akt activity and phosphorylation of its downstream targets in AD brain, along with insulin and insulin-like growth factor-1 signalling (IIS) dysfunction. This is supported by studies of AD models in vivo and in vitro. Our group and others hypothesise that Aβ activates Akt through IIS to initiate a negative feedback mechanism that desensitises neurons to insulin/IGF-1, and sustains activation of Akt. In this study the functions of endogenous Akt, IR, and the insulin receptor substrate (IRS-1) were examined in relationship to Aβ and tau pathology in the 3xTg-AD mouse model, which contains three mutant human transgenes associated with familial AD or dementia. The 3xTg-AD mouse develops Aβ and tau pathology in a spatiotemporal manner that best recapitulates the progression of AD in human brain. Western blotting and immunofluorescent microscopy techniques were utilised in vivo and in vitro, to examine the relationship between IIS, Akt, and AD pathology. I first characterised in detail AD pathology in 3xTg-AD mice, where an age-related accumulation of intraneuronal Aβ and tau was observed in the hippocampal formation, amygdala, and entorhinal cortex, and at late stages (18 months), extracellular amyloid plaques and NFTs, primarily in the subiculum and the CA1 layer of the hippocampal formation. Increased activity of Akt, detected with antibody to phosphoSer473-Akt, was increased in 3xTg-AD mice compared to age-matched non-transgenic mice (non-Tg), and in direct correlation to the accumulation of Aβ and tau in neuronal somatodendritic compartments. Akt phosphorylates tau at residue Ser214 within a highly specific consensus sequence for Akt phosphorylation, and phosphoSer214-tau strongly decreases microtubule (MT) stabilisation by preventing tau-MT binding. PhosphoSer214-tau increased concomitantly with this in the same age-related and region-specific fashion. Polarisation of tau phosphorylation was observed, where PHF-1 (tauSer396/404) and phosphoSer214-tau both appeared early in 3xTg-AD mice in distinct neuronal compartments: PHF-1 in axons, and phosphoSer214-tau in neuronal soma and dendrites. At 18 months, phosphoSer214-tau strongly colocalised with NFTs positive for the PHF- 1 and AT8 (tauSer202/Thr205) phosphoepitopes. IR was decreased with age in 3xTg-AD brain and in comparison to age-matched non-Tg, and this was specific for brain regions containing Aβ, tau, and hyperactive Akt. IRS-1 was similarly decreased, and both proteins showed altered subcellular distribution. Phosphorylation of IRS-1Ser312 is a strong indicator of IIS dysfunction and insulin resistance, and was increased in 3xTg-AD mice with age and in relation to pathology. Of particular note was our observation that abberant IIS and Akt signalling in 3xTg-AD brain related to Aβ and tau pathology on a gross anatomical level, and specifically localised to the brain regions and circuitry of the perforant path. Finally, I conducted a preliminary study of the effects of synthetic Aβ oligomers on embryonic rat hippocampus neuronal cultures to support these results and those in the literature. Taken together, these novel findings provide evidence for IIS and Akt signal transduction dysfunction as the missing link between Aβ and tau pathogenesis, and contribute to the overall understanding of the biochemical mechanisms of AD.
Resumo:
The naming impairments in Alzheimer's disease (AD) have been attributed to a variety of cognitive processing deficits, including impairments in semantic memory, visual perception, and lexical access. To further understand the underlying biological basis of the naming failures in AD, the present investigation examined the relationship of various classes of naming errors to regional brain measures of cerebral glucose metabolism as measured with 18 F-Fluoro-2-deoxyglucose (FDG) and positron emission tomography (PET). Errors committed on a visual naming test were categorized according to a cognitive processing schema and then examined in relationship to metabolism within specific brain regions. The results revealed an association of semantic errors with glucose metabolism in the frontal and temporal regions. Language access errors, such as circumlocutions, and word blocking nonresponses were associated with decreased metabolism in areas within the left hemisphere. Visuoperceptive errors were related to right inferior parietal metabolic function. The findings suggest that specific brain areas mediate the perceptual, semantic, and lexical processing demands of visual naming and that visual naming problems in dementia are related to dysfunction in specific neural circuits.
Resumo:
OBJECTIVES: The behavioral and psychological symptoms of Alzheimer's disease (AD) are associated with significant patient and caregiver distress and increased likelihood of institutionalization. We attempted to characterize in detail these symptoms and the distress they cause to caregivers. METHODS: Patients with probable AD were assessed with the Mini-Mental State Exam (MMSE), Functional Assessment Staging (FAST), and the Neuropsychiatric Inventory With Caregiver Distress (NPI-D). RESULTS: Four hundred and thirty-five patients were recruited. Neuropsychiatric symptoms of all types were highly prevalent. The most common and most persistent symptom was apathy (75%). Delusional symptoms were the least persistent. Depressive and apathetic symptoms were the earliest to appear, and hallucinations, elation/euphoria, and aberrant motor behavior were the latest symptoms to emerge. Hallucinations were significantly more common in severe dementia. Symptoms of irritability were most prevalent in early disease. Total Neuropsychiatric Symptom score was significantly correlated with MMSE and FAST score. Caregivers rated their own emotional distress levels as moderate or severe for 10 out of 12 symptom domains. The sum total of caregiver distress was strongly correlated with total NPI-D but not cognition or functional state. Distress levels did not vary when analyzed according to the patients' place of residence. CONCLUSIONS: Potentially treatable neuropsychiatric symptoms are common in AD and represent a major source of distress among caregivers. The extent of neuropsychiatric symptomatology is seen to correlate with the level of functional and cognitive disability although some symptoms are variably persistent and related to disease stage.
Resumo:
OBJECTIVES: Behavioural and psychological symptoms of dementia (BPSD) are potent predictors of carer distress and admission to institutional care. In Alzheimer's disease (AD), depressive symptoms are one of the most common complaints affecting around 50% of all patients. There is speculation these symptoms result from known genetic risk factors for AD, therefore we investigated the role of apolipoprotein E epsilon4 in the aetiology of depression in AD. METHODS: In this well-characterised cohort (n = 404) from the relatively genetically homogeneous Northern Ireland population, we tested the hypothesis that genetic variants of apolipoprotein E influence the risk for depressive symptoms in AD patients using the Neuropsychiatric Inventory (NPI-D) to determine the presence of depressive symptoms during the dementing illness. RESULTS: A total of 55% of patients exhibited a history of depression/dysphoria during the course of the illness as gathered by the NPI-D questionnaire. Forty-six percent were suffering from depression/dysphoria when the analysis was restricted to the month prior to interview. No statistically significant association between genotypes or alleles of apolipoprotein E and depression/dysphoria in AD was observed, nor was any association noted between the presence of severe symptoms and genotypes/alleles of apolipoprotein E. CONCLUSIONS: These results suggest apolipoprotein E genotype creates no additional risk for depressive symptoms in AD.
Resumo:
The origins of behavioural and psychological symptoms of dementia are still poorly understood. By focusing on piecemeal behaviours as opposed to more robust syndrome change valid biological correlates may be overlooked. Our understanding of BPSD via the identification of neuropsychiatric syndromes.
Resumo:
The rising number of people with cognitive impairment is placing health care budgets under significant strain. Dementia related behavioural change is a major independent risk factor for admission to expensive institutional care, and aggressive symptoms in particular are poorly tolerated by carers and frequently precipitate the collapse of home coping strategies. Aggressive change may result from known genetic risk factors for Alzheimer's disease (AD) and therefore accompany conventional markers such as apolipoprotein E (ApoE). We tested this hypothesis in 400 moderately to severely affected AD patients who were phenotyped for the presence of aggressive or agitated behaviour during the month prior to interview using the Neuropsychiatric Inventory with Caregiver Distress. The proportion of subjects with aggression/agitation in the month prior to interview was 51.8%. A significantly higher frequency of the e4 allele was found in individuals recording aggression/agitation in the month prior to interview (chi2 = 6.69, df = 2, p = 0.03). The additional risk for aggression/agitation conferred by e4 was also noted when e4 genotypes were compared against non-e4 genotypes (chi2 = 5.45, df = 1, p = 0.02, OR = 1.60, confidence interval (CI) 1.06 to 2.43). These results indicate that advanced Alzheimer's disease patients are at greater risk of aggressive symptoms because of a genetic weakness in apolipoprotein E.
Resumo:
It has been suggested that genetic influences unmasked during neurodevelopment to produce schizophrenia may appear throughout neurodegeneration to produce AD plus psychosis. Risk of schizophrenia and psychosis in Alzheimer's disease (AD) has been linked to polymorphic variation at the dopamine receptor DRD3 gene implying similar causative mechanisms. We tested this association in a large cohort of Alzheimer's disease patients with a diagnosis of probable AD of 3 years or more duration from the relatively genetically homogenous Northern Irish population. We assessed relationships between genotypes/alleles of the DRD3 BalI polymorphism and the presence or absence of psychotic symptoms (delusions, hallucinations) in AD patients during the month prior to interview and at any stage during the dementia. No significant associations were found when delusions and hallucinations were cross-tabulated against S and G alleles and SS, SG and GG genotypes. Logistic regression failed to detect any influence of APOE, gender, family history or prior psychiatric history. In conclusion, we were unable to confirm previously reported associations between the DRD3 BalI polymorphism and psychotic symptoms in AD.
Resumo:
There is substantial evidence for a susceptibility gene for late-onset Alzheimer's disease (AD) on chromosome 10. One of the characteristic features of AD is the degeneration and dysfunction of the cholinergic system. The genes encoding choline acetyltransferase (ChAT) and its vesicular transporter (VAChT), CHAT and SLC18A3 respectively, map to the linked region of chromosome 10 and are therefore both positional and obvious functional candidate genes for late-onset AD. We have screened both genes for sequence variants and investigated each for association with late-onset AD in up to 500 late-onset AD cases and 500 control DNAs collected in the UK. We detected a total of 17 sequence variants. Of these, 14 were in CHAT, comprising three non-synonymous variants (D7N in the S exon, A120T in exon 5 and L243F in exon 8), one synonymous change (H547H), nine single-nucleotide polymorphisms in intronic, untranslated or promoter regions, and a variable number of tandem repeats in intron 7. Three non-coding SNPs were detected in SLC18A3. None demonstrated any reproducible association with late-onset AD in our samples. Levels of linkage disequilibrium were generally low across the CHAT locus but two of the coding variants, D7N and A120T, proved to be in complete linkage disequilibrium.
Resumo:
The non-beta-amyloid (Aß) component of Alzheimer's disease amyloid (NAC) and its precursor a-synuclein have been linked to amyloidogenesis in several neurodegenerative diseases. NAC and a-synuclein both form ß-sheet structures upon ageing, aggregate to form fibrils, and are neurotoxic. We recently established that a peptide comprising residues 3±18 of NAC retains these properties. To pinpoint the exact region responsible we have carried out assays of toxicity and physicochemical properties on smaller fragments of NAC. Toxicity was measured by the ability of fresh and aged peptides to inhibit the reduction of the redox dye 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide (MTT) by rat pheochromocytoma PC12 cells and human neuroblastoma SHSY-5Y cells. On immediate dissolution, or after ageing, the fragments NAC(8±18) and NAC(8±16) are toxic, whereas NAC(12±18), NAC(9±16) and NAC(8±15) are not. Circular dichroism indicates that none of the peptides displays ß-sheet structure; rather all remain random coil throughout 24 h. However, in acetonitrile, an organic solvent known to induce ß sheet, fragments NAC(8±18) and NAC(8±16) both form ß-sheet structure. Only NAC(8±18) aggregates, as indicated by concentration of peptide remaining in solution after 3 days, and forms fibrils, as determined by electron microscopy. These findings indicate that residues 8±16 of NAC, equivalent to residues 68±76 in a-synuclein, comprise the region crucial for toxicity.
Resumo:
To compare directly, in the same patient cohort, the ease of use and tolerability of donepezil and galantamine in the treatment of Alzheimer's disease (AD), and investigate the effects of both treatments on cognition and activities of daily living (ADL).