862 resultados para ALUMINIUM SILICATES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The distribution of dissolved aluminium in the West Atlantic Ocean shows a mirror image with that of dissolved silicic acid, hinting at intricate interactions between the ocean cycling of Al and Si. The marine biogeochemistry of Al is of interest because of its potential impact on diatom opal remineralisation, hence Si availability. Furthermore, the dissolved Al concentration at the surface ocean has been used as a tracer for dust input, dust being the most important source of the bio-essential trace element iron to the ocean. Previously, the dissolved concentration of Al was simulated reasonably well with only a dust source, and scavenging by adsorption on settling biogenic debris as the only removal process. Here we explore the impacts of (i) a sediment source of Al in the Northern Hemisphere (especially north of ~ 40° N), (ii) the imposed velocity field, and (iii) biological incorporation of Al on the modelled Al distribution in the ocean. The sediment source clearly improves the model results, and using a different velocity field shows the importance of advection on the simulated Al distribution. Biological incorporation appears to be a potentially important removal process. However, conclusive independent data to constrain the Al / Si incorporation ratio by growing diatoms are missing. Therefore, this study does not provide a definitive answer to the question of the relative importance of Al removal by incorporation compared to removal by adsorptive scavenging.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Concentrations of dissolved (0.2 µm filtered) aluminium (Al) have been determined for the first time in the Eurasian part of the Arctic Ocean over the entire water column during expedition ARK XXII/2 aboard R.V. Polarstern (2007). An unprecedented number of 666 samples was analysed for 44 stations along 5 ocean transects. Dissolved Al in surface layer water (SLW) was very low, close to 1 nM, with lowest SLW concentrations towards the Canadian part of the Arctic Ocean and higher values adjacent to and in the shelf seas. The low SLW concentrations indicate no or little influence from aeolian dust input. Dissolved Al showed a nutrient-type increase with depth up to 28 nM, but large differences existed between the different deep Arctic basins. The differences in concentrations of Al between water masses and basins could largely be related to the different origins of the water masses. In the SLW and intermediate water layers, Atlantic and Pacific inflows were of importance. Deep shelf convection appeared to influence the Al distribution in the deep Eurasian Basin. The Al distribution of the deep Makarov Basin provides evidence for Eurasian Basin water inflow into the deep Makarov Basin. A strong correlation between Al and Silicon (Si) was observed in all basins. This correlation and the nutrient-like profile indicate a strong biological influence on the cycling and distribution of Al. The biological influence can be direct by the incorporation of Al in biogenic silica, indirect by preferential scavenging of Al onto biogenic siliceous particles, or by a combination of both processes. From the slope of the overall Al-Si relationship in the intermediate water layer (AIDW; ~ 200-2000 m depth), an Al/Si ratio of 2.2 atoms Al per 1000 atoms Si was derived. This ratio is consistent with the range of previously reported Al/Si uptake ratio in biogenic opal frustules of diatoms. In the deepest waters (>2000 m depth) a steeper slope of the Al-Si relationship of 7.4 to 13 atoms Al per 1000 atoms Si likely results from entrainment of cold shelf water into the deep basins, carrying the signal of dissolution of terrigenous particles with a much higher Al:Si ratio of crustal abundance. Only a small enrichment with such crustal Al and Si component may readily account for the higher Al:Si slope in the deepest waters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dense, CO2-rich fluid inclusions hosted by plagioclases, An45 to An54, of the O.-v.-Gruber- Anorthosite body, central Dronning Maud Land, East Antarctica, contain varying amounts of small calcite, paragonite and pyrophyllite crystals detected by Raman microspectroscopy. These crystals are reaction products that have formed during cooling of the host and the original CO2-rich H2O-bearing enclosed fluid. Variable amounts of these reaction products illustrates that the reaction did not take place uniformly in all fluid inclusions, possibly due to differences in kinetics as caused by differences in shape and size, or due to compositional variation in the originally trapped fluid. The reaction albite + 2anorthite + 2H2O + 2CO2 = pyrophyllite + paragonite + 2calcite was thermodynamically modelled with consideration of different original fluid compositions. Although free H2O is not detectable in most fluid inclusions, the occurrence of OH-bearing sheet silicates indicates that the original fluid was not pure CO2, but contained significant amounts of H2O. Compared to an actual fluid inclusion it is obvious, that volume estimations of solid phases can be used as a starting point to reverse the retrograde reaction and recalculate the compositional and volumetrical properties of the original fluid. Isochores for an unmodified inclusion can thus be reconstructed, leading to a more realistic estimation of P-T conditions during earlier metamorphic stages or fluid capturing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Total dissolvable iron (TDFe), particulate iron (PFe) and hydrogen peroxide (H2O2 measurements were performed along a N-S transect in the upper 250 m in the Southern Ocean (62°00E/66°42S - 49°00S, ANTARES II cruise, February 1994). TDFe was organically extracted (APDC/DDDC-chloroform) and analysed by Graphite Furnace Atomic Absorption Spectrometry (GFAAS), PFe was analysed by GFAAS following a strong mixed-acid leach, and H2O2 was analysed on board by fluorometry. The respective detection limits are equal to 0.13 nmol/kg, 0.02 nmol/kg, and 3.0 nmol/kg. TDFe concentrations vary from 0.4 to 6.2 nmol/kg and profiles are not completely depleted in the surface. PFe concentrations vary from 0.02 to 0.2 nmol/kg. Iron/carbon (Fe/C) uptake ratios for phytoplankton were calculated either from seawater or particle measurements. They are variable along the transect but are consistent when they could be compared. All the observed ratios are within the range of values proposed for the Fe/C uptake ratios by phytoplankton. Using our uptake ratio calculated in the Permanent Open Ocean Zone (4 x 10**?6 mol/mol), we estimate that the primary production which can be supported by the iron input flux into the surface waters is two times higher than the measured primary production in the same area. In the surface waters, H2O2 concentrations vary from 5.0 to 19.7 nmol/kg. Such low concentrations are due to strong vertical mixing, low dissolved organic matter concentrations and the latitude of the site.