928 resultados para ALLENYLIDENE-RUTHENIUM COMPLEXES
Resumo:
Electronic energy transfer (EET) rate constants between a naphthalene donor and anthracene acceptor in [ZnL4a](ClO4)(2) and [ZnL4b](ClO4)(2) were determined by time-resolved fluorescence where L-4a and L-4b are the trans and cis isomers of 6-((anthracen-9-yl-methyl)amino)-6,13-dimethyl-13-((naphthalen-1-yl-methyl)amino)-1,4,8,11-tetraazacyclotetradecane, respectively. These isomers differ in the relative disposition of the appended chromophores with respect to the macrocyclic plane. The trans isomer has an energy transfer rate constant (k(EET)) of 8.7 x 10(8) s(-1), whereas that of the cis isomer is significantly faster (2.3 x 10(9) s(-1)). Molecular modeling was used to determine the likely distribution of conformations in CH3CN solution for these complexes in an attempt to identify any distance or orientation dependency that may account for the differing rate constants observed. The calculated conformational distributions together with analysis by H-1 NMR for the [ZnL4a](2+) trans complex in the common trans-III N-based isomer gave a calculated Forster rate constant close to that observed experimentally. For the [ZnL4b](2+) cis complex, the experimentally determined rate constant may be attributed to a combination of trans-Ill and trans-I N-based isomeric forms of the complex in solution.
Resumo:
Di-2-pyridyl ketone isonicotinoyl hydrazone (HPKIH) and a range of its analogues comprise a series of monobasic acids that are capable of binding iron (Fe) as tridentate (N,N,O) ligands. Recently, we have shown that these chelators are highly cytotoxic, but show selective activity against cancer cells. Particularly interesting was the fact that cytotoxicity of the HPKIH analogues is maintained even after complexation with Fe. To understand the potent anti-tumor activity of these compounds, we have fully characterized their chemical properties. This included examination of the solution chemistry and X-ray crystal structures of both the ligands and Fe complexes from this class and the ability of these complexes to mediate redox reactions. Potentiometric titrations demonstrated that all chelators are present predominantly in their charge-neutral form at physiological pH (7.4), allowing access across biological membranes. Keto-enol tautomerism of the ligands was identified, with the tautomers exhibiting distinctly different protonation constants. Interestingly, the chelators form low-spin (diamagnetic) divalent Fe complexes in solution. The chelators form distorted octahedral complexes with Fe-II, with two tridentate ligands arranged in a meridional fashion. Electrochemistry of the Fe complexes in both aqueous and non-aqueous solutions revealed that the complexes are oxidized to their ferric form at relatively high potentials, but this oxidation is coupled to a rapid reaction with water to form a hydrated (carbinolamine) derivative, leading to irreversible electrochemistry. The Fe complexes of the HPKIH analogues caused marked DNA degradation in the presence of hydrogen peroxide. This observation confirms that Fe complexes from the HPKIH series mediate Fenton chemistry and do not repel DNA. Collectively, studies on the solution chemistry and structure of these HPKIH analogues indicate that they can bind cellular Fe and enhance its redox activity, resulting in oxidative damage to vital biomolecules.
Resumo:
Iron chelators of the 2-pyridinecarbaldehyde isonicotinoylhydrazone (HPCIH) class show high potential for the treatment of iron overload diseases. In the present study, selected first-row transition metal (from Mn to Zn) complexes with HPCIH and 2-pyridinecarbaldehyde (4'-aminobenzoyl)hydrazone (HPCAH) were synthesised and characterised. Crystallography reveals that HPCAH exclusively forms bis complexes with divalent transition metals, with each ligand coordinating meridionally through its pyridine-N, imine-N and carbonyl-O atoms, forming distorted octahedral cis-MN4O2 complexes. Complexes of HPCIH were more varied and unpredictable, with metal/ligand ratios of 1:1, 1:2, 2:2 and 3:2 obtained with different metal ions. The isonicotinoyl ring N-atom in HPCIH was found to be an effective ligand, and this resulted in the varied metal/ligand ratios observed. The formation constants of divalent metal complexes with HPCIH were determined by potentiometric titrations and the values obtained were consistent with similar tridentate ligands and with the Irving-Williams order. ((C) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2003).
Resumo:
The major trans (1) and minor cis (2) isomers of 1,4,8,11-tetraazacyclotetradecane-6,13-dicarboxylate have been characterized as the complexes [Co(1)](ClO4) and [Co(H-2)(OH2)]Cl(ClO4).H2O. The former crystallized in the C-2/c space group and the latter in the P2(1)/c space group, with cell parameters a 16.258(7), b 9.050(3), c 15.413(6) Angstrom, beta133.29(3)degrees, and a 9.694(4), b 16.135(1), c 12.973(5) Angstrom, beta 93.00(2)degrees, respectively. Their characterization completes identification of the respective trans and cis isomers for the series of C-pendant macrocycles also including 1,4,8,11-tetraazacyclotetradecane-6-amine-13-carboxylate ((3), (4)) and 1,4,8,11-tetraazacyclotetradecane-6,13-diamine ((5), (6)). The complexes show limited distortion from octahedral geometry with the strain in the presence of the coordinated C-pendant carboxylate significantly reduced compared with that for the C-pendant amine in analogues, a consequence mainly of six-membered as opposed to five-membered chelate rings involving the pendant donor. A comparison of the physical properties for the trans isomers of the octahedral complexes of (1), (3), and (5), which reflect progressively increasing strain, is presented.
Resumo:
The outer-sphere redox behaviour of a series of [LnCoIII-NCFeII(CN)(5)](-) (L-n = n-membered pentadentate aza-macrocycle) complexes have been studied as a function of pH and oxidising agent. All the dinuclear complexes show a double protonation process at pH approximate to 2 that produces a shift in their UV/Vis spectra. Oxidation of the different non-protonated and diprotonated complexes has been carried out with peroxodisulfate, and of the non-protonated complexes also with trisoxalatocobaltate(III). The results are in agreement with predictions from the Marcus theory. The oxidation of [Fe(phen)(3)](3+) and [IrCl6](2-) is too fast to be measured, although for the latter the transient observation of the process has been achieved at pH = 0. The study of the kinetics of the outer-sphere redox process, with the S2O82- and [Co(ox)(3)](3-) oxidants, has been carried out as a function of pH, temperature, and pressure. As a whole, the values found for the activation volumes, entropies, and enthalpies are in the following margins, for the diprotonated and non-protonated dinuclear complexes, respectively: DeltaV(not equal) from 11 to 13 and 15 to 20 cm(3) mol(-1); DeltaS(not equal) from 110 to 30 and -60 to -90 J K-1 mol(-1); DeltaH(not equal) from 115 to 80 and 50 to 65 kJ.mol(-1). The thermal activation parameters are clearly dominated by the electrostriction occurring on outer-sphere precursor formation, while the trends found for the values of the volume of activation indicate an important degree of tuning due to the charge distribution during the electron transfer process. The special arrangement on the amine ligands in the isomer trans[(L14CoNCFeII)-N-III(CN)(5)](-) accounts for important differences in solvent-assisted hydrogen bonding occurring within the outer-sphere redox process, as has been established in redox reactions of similar compounds. ((C) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2003).
Resumo:
A survey of the scorpionate tris(pyrazolyl)methane complexes synthesized by our group is presented, as well as their structural features and catalytic applications toward the funtionalization of linear and cyclic light alkanes.
Resumo:
The new potentially N-4-multidentate pyridyl-functionalized scorpionates 4-((tris-2,2,2-(pyrazol-1-ypethoxy)methyl)pyridine (TpmPy, (1)) and 4-((tris-2,2,2-(3-phenylpyrazol-1-yl)ethoxy)methyl)pyridine (TpmPy(Ph), (2)) have been synthesized and their coordination behavior toward Fe-II, Ni-II, Zn-II, Cu-II, Pd-II, and V-III centers has been studied. Reaction of (1) with Fe(BF4)(2)center dot 6H(2)O yields [Fe(TpmPy)(2)](BF4)(2) (3), that, in the solid state, shows the sandwich structure with trihapto ligand coordination via the pyrazolyl arms, and is completely low spin (LS) until 400 K. Reactions of 2 equiv of (1) or (2) with Zn-II or Ni-II chlorides give the corresponding metal complexes with general formula [MCl2(TpmPy*)(2)] (M = Zn, Ni; TpmPy* = TpmPy, TpmPy(Ph)) (4-7) where the ligand is able to coordinate through either the pyrazolyl rings (in case of [Ni(TpmPy)(2)Cl-2 (5)) or the pyridyl-side (for [ZnCl2(TpmPy)(2)] (4), [ZnCl2(TpmPy(Ph))(2)] (6) and [NiCl2(TpmPy(Ph))(2)] (7)). The reaction of (1) with VCl3 gives [VOCl2(TpmPy)] (8) that shows the N-3-pyrazolyl coordination-mode. Moreover, (1) and react with cis-[PdCl2(CH3CN)(2)] to give the disubstituted complexes [PdCl2(TprnPy)(2)] (9) and [PdCl2(TpmPy(Ph))(2)] (10), respectively, bearing the scorpionate coordinated via the pyridyl group. Compounds (9) and (10) react with Fe(BF4)(2) to give the heterobimetallic Pd/Fe systems [PdCl2(mu-TpmPy)(2)-Fe](BF4)(2) (11) and [PdCl2(mu-TpmPy(Ph))(2)Fe-2(H2O)(6)]BF4)(4) (13), respectively. Compound (11) can also be formed from reaction of (3) with cis-[PdCl2(CH3CN)(2)], while reaction of (3) with Cu(NO3)(2).2.5H(2)O generates [Fe(mu-TpmPy)(2)-Cu(NO3)(2)](BF4)(2) (12), confirming the multidentate ability of the new chelating ligands. The X-ray diffraction analyses of compounds (1), (3), (4), (5), and (9) are also reported.
Resumo:
The tris(1-pyrazolyl)methanesulfonate lithium salt Li(Tpms) [Tpms = SO3C(pz)(3)-] reacts with [Mo(CO)(6)] in NCMe heated at reflux to yield Li[Mo(Tpms)(CO)(3)] (1), which, upon crystallization from thf, forms the coordination polymer [Mo(Tpms)(CO)(2)(mu-CO)Li(thf)(2)](n) (2). Reaction of 1 with I-2, HBF4 or AgBF4 yields [Mo(Tpms)I(CO)(3)] (3), (Mo(Tpms)-H(CO)(3)] (5) or (Mo(Tpms)O-2](2)(mu-O) (7), respectively. The high-oxidation-state dinuclear complexes [{Mo(Tpms)O(mu-O)}(2)] (4) and [{Mo(tpms)OCl)(2)](mu-O) (6) are formed upon exposure to air of solutions of 3 and 5, respectively. Compounds 1-7, which appear to be the first tris(pyrazolyl)methanesulfonate complexes of molybdenum to be reported, were characterized by IR, H-1 and C-13 NMR spectroscopy, ESI-MS, elemental analysis, cyclic voltammetry and, in the cases of Li(Tpms) and compounds 2, 4.2CH(3)CN, 6.6CHCl(3) and 7, by X-ray diffraction analyses. Li(Tpms) forms a 1D polymeric structure (i.e., [Li(tpms)](n)} with Tpms as a tetradentate N2O2 chelating ligand that bridges two Li cations with distorted tetrahedral coordination. Compound 2 is a 1D coordination polymer in which Tpms acts as a bridging tetradentate N3O ligand and each Li(thf)(2)(+) moiety is coordinated by one bridging CO ligand and by the sulfonyl group of a contiguous monomeric unit. In 4, 6 and 7, the Tpms ligand is a tridentate chelator either in the NNO (in 4) or in the NNN (in 6 and 7) fashion. Complexes 1, 3 and 5 exhibit, by cyclic voltammetry, a single-electron oxidation at oxidation potential values that indicate that the Tpms ligand has an electron-donor character weaker than that of cyclopentadienyl.
Resumo:
The dioxovanadium(V) complexes [VO2(3,5-Me(2)Hpz)(3)][BF4] (1) (pz = pyrazolyl), [VO2{SO3C(pz)(3)}] (2), [VO2{HB(3,5-Me(2)pz)(3)}] (3) and [VO2{HC(pz)(3)}][BF4] (4), bearing pyrazole or scorpionate ligands, were obtained by reaction of triethyl vanadate [VO(OEt)(3)] with hydrotris(3,5-dimethyl-1-pyrazolyl)methane [HC(3,5-Me(2)pz)(3)] or 3,5-dimethylpyrazole (3,5-Me(2)Hpz; 1), lithium tris(1-pyrazolyl)methanesulfonate {Li[SO3C(pz)(3)], 2}, potassium hydrotris(3,5-dimethyl-1-pyrazolyl)borate {K[HB(3,5-Me(2)pz)(3)], 3} and hydrotris(1-pyrazolyl)methane [HC(pz)(3), 4], respectively. Treatment of [VO(OEt)(3)] with potassium hydrotris(1-pyrazolyl)borate {K[HB(pz)(3)]} led to the mixed eta(3)-tris(pyrazolyl)borate and eta(2)-bis(pyrazolyl)borate oxovanadium(IV) complex [VO{HB(pz)(3)}{H2B(pz)(2)}, 5]. The compounds were characterized by elemental analyses, IR, NMR and EPR spectroscopy, FAB and ESI mass spectrometry, cyclic voltammetry and, for 5, also by single crystal X-ray diffraction analysis. All complexes exhibit catalytic activity in the single-pot carboxylation [in trifluoroacetic acid/potassium peroxodisulfate (CF3COOH/K2S2O8)] of gaseous alkanes (methane and ethane) to carboxylic acids (yields up to 40%. TONs up to 157) and in the peroxidative oxidation [in water/acetonitrile (H2O/NCMe)] of liquid alkanes (cyclohexane and cyclopentane) to the corresponding alcohols and ketones (yields up to 24%, TONs up to 117), under mild conditions.
Resumo:
The reactions of [ReCl2{eta(2)-N2C(O)Ph}(PPh3)(2)](1) with 2-aminopyrimidine (H(2)Npyrm), 2,2'-bipyridine (bpy) and tetraethylthiuram disulfide (tds), in MeOH upon reflux, lead to the new eta(1)-(benzoyldiazenido)-rhenium(III) complexes [ReCl{eta(1)-N2C(O)Ph}(HNpyrm)(PPh3)(2)](2)and [ReCl2{eta(1)-N2C(O)Ph}(bpy)(PPh3)] (3), and the known oxo(diethyldithiocarbamato)dirhenium(v)complex [Re2O2(mu O){Et2NC(S)S}(4)](4), respectively. The Et2NC(S)S ligands in 4 result from S-S bond rupture of tds molecules. The obtained compounds have been characterized by IR, H-1, P-31{H-1} and C-13{H-1} NMR spectroscopies, FAB(+)-MS, elemental and single-crystal X-ray diffraction (for 2 and 4)analyses. Complex 2 represents the first structurally characterized Re compound derived from 2-aminopyrimidine. Besides, the redox behaviour of 2-4 in CH2Cl2 solution has been studied by cyclic voltammetry, and the Lever electrochemical ligand parameter (E-L)has been estimated, for the first time, for HNpyrm. The electrochemical results are discussed in terms of electronic properties of the Re centres and the ligands.
Resumo:
Reactions of copper(II) with 3-phenylhydrazopentane-2,4-diones X-2-C6H4-NHN = C{C(= O)CH3}(2) bearing a substituent in the ortho-position [X = OH (H2L1) 1, AsO3H2 (H3L2) 2, Cl (HL3) 3, SO3H (H2L4) 4, COOCH3 (HL5) 5, COOH (H2L6) 6, NO2 (HL7) 7 or H (HL8) 8] lead to a variety of complexes including the monomeric [CuL4(H2O)(2)]center dot H2O 10, [CuL4(H2O)(2)] 11 and [Cu(HL4)(2)(H2O)(4)] 12, the dimeric [Cu-2(H2O)(2)(mu-HL2)(2)] 9 and the polymeric [Cu(mu-L-6)](n)] 13 ones, often bearing two fused six-membered metallacycles. Complexes 10-12 can interconvert, depending on pH and temperature, whereas the Cu(II) reactions with 4 in the presence of cyanoguanidine or imidazole (im) afford the monomeric compound [Cu(H2O)(4){NCNC(NH2)(2)}(2)](HL4)(2)center dot 6H(2)O 14 and the heteroligand polymer [Cu(mu-L-4)(im)](n) 15, respectively. The compounds were characterized by single crystal X-ray diffraction (complexes), electrochemical and thermogravimetric studies, as well as elemental analysis, IR, H-1 and C-13 NMR spectroscopies (diones) and ESI-MS. The effects of the substituents in 1-8 on the HOMO-LUMO gap and the relative stability of the model compounds [Cu(OH)(L-8)(H2O)]center dot H2O, [Cu(L-1)(H2O)(2)]center dot H2O and [Cu(L-4)(H2O)(2)]center dot H2O are discussed on the basis of DFT calculations that show the stabilization follows the order: two fused 6-membered > two fused 6-membered/5-membered > one 6-membered metallacycles. Complexes 9, 10, 12 and 13 act as catalyst precursors for the peroxidative oxidation (with H2O2) of cyclohexane to cyclohexanol and cyclohexanone, in MeCN/H2O (total yields of ca. 20% with TONs up to 566), under mild conditions.
Resumo:
The reactions of FeCl2 center dot 2H(2)O and 2,2,2-tris(1-pyrazolyl) ethanol HOCH2C(pz)(3) (1) (pz = pyrazolyl) afford [Fe{HOCH2C(pz)(3)}(2)][FeCl4]Cl (2), [Fe{HOCH2C(pz)(3)}(2)](2)[Fe2OCl6](Cl)(2)center dot 4H(2)O (3 center dot 4H(2)O), [Fe{HOCH2C(pz)(3)}(2)] [FeCl{HOCH2C(pz)(3)}(H2O)(2)](2)(Cl)(4) (4) or [Fe{HOCH2C(pz)(3)}(2)]Cl-2 (5), depending on the experimental conditions. Compounds 1-5 were isolated as air-stable crystalline solids and fully characterized, including (1-4) by single-crystal X-ray diffraction analyses. The latter technique revealed strong intermolecular H-bonds involving the OH group of the scorpionate 2 and 3 giving rise to 1D chains which, in 3, are further expanded to a 2D network with intercalated infinite and almost plane chains of H-interacting water molecules. In 4, intermolecular pi center dot center dot center dot pi interactions involving the pyrazolyl rings are relevant. Complexes 2-5 display a high solubility in water (S-25 degrees C ca. 10-12 mg mL(-1)), a favourable feature towards their application as catalysts (or catalyst precursors) for the peroxidative oxidation of cyclo-hexane to cyclohexanol and cyclohexanone, with aqueous H2O2/MeCN, at room temperature (TON values up to ca. 385). (C) 2011 Elsevier B. V. All rights reserved.
Resumo:
Five new silver(I) complexes of formulas [Ag(Tpms)] (1), [Ag(Tpms)-(PPh3)] (2), [Ag(Tpms)(PCy3)] (3), [Ag(PTA)][BF4] (4), and [Ag(Tpms)(PTA)] (5) {Tpms = tris(pyrazol-1-yl)methanesulfonate, PPh3 = triphenylphosphane, PCy3 = tricyclohexylphosphane, PTA = 1,3,5-triaza-7-phosphaadamantane) have been synthesized and fully characterized by elemental analyses, H-1, C-13, and P-31 NMR, electrospray ionization mass spectrometry (ESI-MS), and IR spectroscopic techniques. The single crystal X-ray diffraction study of 3 shows the Tpms ligand acting in the N-3-facially coordinating mode, while in 2 and 5 a N2O-coordination is found, with the SO3 group bonded to silver and a pendant free pyrazolyl ring. Features of the tilting in the coordinated pyrazolyl rings in these cases suggest that this inequivalence is related with the cone angles of the phosphanes. A detailed study of antimycobacterial and antiproliferative properties of all compounds has been carried out. They were screened for their in vitro antimicrobial activities against the standard strains Enterococcus faecalis (ATCC 29922), Staphylococcus aureus (ATCC 25923), Streptococcus pneumoniae (ATCC 49619), Streptococcus pyogenes (SF37), Streptococcus sanguinis (SK36), Streptococcus mutans (UA1S9), Escherichia coli (ATCC 25922), and the fungus Candida albicans (ATCC 24443). Complexes 1-5 have been found to display effective antimicrobial activity against the series of bacteria and fungi, and some of them are potential candidates for antiseptic or disinfectant drugs. Interaction of Ag complexes with deoxyribonucleic acid (DNA) has been studied by fluorescence spectroscopic techniques, using ethidium bromide (EB) as a fluorescence probe of DNA. The decrease in the fluorescence of DNA EB system on addition of Ag complexes shows that the fluorescence quenching of DNA EB complex occurs and compound 3 is particularly active. Complexes 1-5 exhibit pronounced antiproliferative activity against human malignant melanoma (A375) with an activity often higher than that of AgNO3, which has been used as a control, following the same order of activity inhibition on DNA, i.e., 3 > 2 > 1 > 5 > AgNO3 >> 4.
Resumo:
The oxovanadium(IV) complexes [VO(acac)(2)(Hpz)].HC(pz)(3) 1.HC(pz)(3) (acac= acetylacetonate, Hpz = pyrazole, pz = pyrazoly1) and [VOCl2{HOCH2C(pz)(3)}] 2 were obtained from reaction of [VO(acac)(2)] with hydrotris(1-pyrazolyl)methane or of VCl(3)with 2,2,2-tris(1-pyrazolyl)ethanol. The compounds were characterized by elemental analysis, IR, Far-IR and EPR spectroscopies, FAB or ESI mass-spectrometry and, for 1, by single crystal X-ray diffraction analysis. 1 and 2 exhibit catalytic activity for the oxidation of cyclohexane to the cyclohexanol and cyclohexanone mixture in homogeneous system (TONS up to 1100) under mild conditions (NCMe, 24h, room temperature) using benzoyl peroxide (BPO), tert-butyl hydroperoxide (TBHP), m-chloroperoxybenzoic acid (mCPBA), hydrogen peroxide or the urea-hydrogen peroxide adduct (UHP) as oxidants. 1 and 2 were also immobilized on a polydimethylsiloxane membrane (1-PDMS or 2-PDMS) and the systems acted as supported catalysts for the cyclohexane oxidation using the above oxidants (TONs up to 620). The best results were obtained with mCPBA or BP0 as oxidant. The effects of various parameters, such as the amount of catalyst, nitric acid, reaction time, type of oxidant and oxidant-to-catalyst molar ratio, were investigated, for both homogeneous and supported systems. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Mononuclear manganese(II) [Mn(kappa O-HL)(2)(CH3OH)(4)] (4), nickel(II) [Ni(kappa O-2, kappa N-L)(H2O)(3)] (5), cadmium(II) [Cd(kappa O-2-HL)(2)(CH3OH)(3)] (7), tetranuclear zinc(II) [Zn-4(mu-OH)(2)(1 kappa O:2 kappa O-HL)(4)(kappa O-HL)(2)(H2O)(4)] (6) and polynuclear aqua sodium(I) [Na(H2O)(2)(mu-H2O)(2)](n)(HL)(n) (2) and magnesium(II) [Mg(OH)(H2O)(mu-H2O)(2)](n)(-HL)(n) (3) complexes were synthesized using 3-(2-carboxyphenyl-hydrazone)pentane-2,4-dione (H2L, 1) as a ligand precursor. The complexes were characterized by single crystal X-ray diffraction, elemental analysis, IR, H-1 and C-13 NMR (for 2, 3, 6 and 7) spectroscopies. Mono- or dianionic deprotonated derivatives of H2L display different coordination modes and lead to topologies and nuclearities of the complexes depending on metal ions and conditions used for the syntheses. Extensive intermolecular H-bonds form supramolecular arrangements in 1D chains (4 and 6), 1D chains of the organic anion and 2D networks of the metal-aqua aggregates (2 and 3), 2D networks (7) or even 3D frameworks (5). Electrochemical studies, by cyclic voltammetry and controlled potential electrolysis, show ligand centred redox processes as corroborated by theoretical DFT calculations in terms of LUMO and HOMO compositions. (C) 2012 Elsevier Ltd. All rights reserved.