995 resultados para AGENDA 21
Resumo:
Context: 21-Hydroxylase deficiency (21OHD) is caused by CYP21A2 gene mutations disrupting the adrenal 21-hydroxylase, P450c21. CYP21A2 mutations generally correlate well with the 21OHD phenotype, but some children with severe CYP21A2 mutations have residual 21-hydroxylase activity. Some hepatic P450 enzymes can 21-hydroxylate progesterone, but their physiological relevance in modifying 21OHD is not known. Objective: Wedetermined the ability of CYP2C19 and CYP3A4 to 21-hydroxylate progesterone and 17-hydroxyprogesterone (17OHP), determined the impact of the common P450 oxidoreductase (POR) variant A503V on these activities, and examined correlations between CYP2C19 variants and phenotype in patients with 21OHD. Methods: Bacterially expressed, N-terminally modified, C-His-tagged human P450c21, CYP2C19, and CYP3A4 were combined with bacterially expressed wild-type and A503V POR. The 21-hydroxylation of radiolabeled progesterone and 17OHP was assessed, and the Michaelis constant (Km) and maximum velocity (Vmax) of the reactions were measured. CYP2C19 was genotyped in 21OHD patients with genotypes predicting severe congenital adrenal hyperplasia. Results: Compared to P450c21, the Vmax/Km for 21-hydroxylation of progesterone by CYP2C19 and CYP3A4 were 17 and 10%, respectively. With both forms of POR, the Km for P450c21 was approximately 2.6 mu M, the Km for CYP2C19 was approximately 11 mu M, and the Km for CYP3A4 was approximately 110 mu M. Neither CYP2C19 nor CYP3A4 could 21-hydroxylate 17OHP. The CYP2C19 ultrametabolizer allele CYP2C19* 17 was homozygous in one of five patients with a 21OHD phenotype that was milder than predicted by the CYP21A2 genotype. Conclusions: CYP2C19 and CYP3A4 can 21-hydroxylate progesterone but not 17OHP, possibly ameliorating mineralocorticoid deficiency, but not glucocorticoid deficiency. Multiple enzymes probably contribute to extraadrenal 21-hydroxylation. (J Clin Endocrinol Metab 94: 89-95, 2009)
Resumo:
Context: 21-hydroxylase deficiency (21OHD) is a common genetic disorder caused by mutations in the CYP21A2 gene, which encodes the adrenal 21-hydroxylase, microsomal P450c21. CYP21A2 gene mutations generally correlate well with impaired P450c21 enzymatic activity and the clinical findings in 21OHD, but occasional discrepancies between genotype and phenotype suggest the effects of modifier genes. Mutations in P450 oxidoreductase (POR), the protein that transfers electrons from reduced nicotinamide adenine dinucleotide phosphate to all microsomal P450s, can ameliorate the 21OHD phenotype and, therefore, could be a modifier gene. Objectives: We sought to identify POR variants in patients with 21OHD having discordant phenotype and genotype, and to evaluate their effect on 21-hydroxylase activity. Patients and Methods: We determined the CYP21A2 genotypes of 313 Brazilian patients with 21OHD and correlated the genotype and phenotype. The POR gene was sequenced in 17 patients with discordant genotype and phenotype. Wild-type and A503V POR, and P450c21 were expressed in bacteria and reconstituted in vitro. Activities were assayed by conversion of [C-14] progesterone to deoxycorticosterone and [H-3]17-hydroxyprogesterone to 11-deoxycortisol, and assessed by thin layer chromatography and phosphorimaging. Results: The A503V POR variant was found in 10 of 30 alleles, the same ratio as in the normal population. There were no significant differences in Michaelis constant, maximum velocity and maximum velocity/Michaelis constant of 21-hydroxylase activity supported by wild-type and A503V POR. Conclusion: The only POR missense polymorphism found in atypical 21OHD patients was A503V. Although A503V reduces P450c17 enzymatic activity, it does not influence P450c21 activity, indicating that POR A503V does not modify the 21OHD phenotype.
Resumo:
Background Women with 21-hydroxylase deficiency present much variability in external genitalia virilization, even among those with similar impairments of 21-hydroxylase (21OH) activity. Objective To evaluate if the number of CAG (nCAG) repeats of the androgen receptor gene influences the degree of external genitalia virilization in women with CYP21A2 mutations, grouped according to impairment of 21OH activity. Patients The nCAG was determined in 106 congenital adrenal hyperplasia (CAH) patients and in 302 controls. The patients were divided, according to their CYP21A2 genotypes, into Groups A and B, which confer total and severe impairment of 21OH activity, respectively. Methods The inactivation pattern of the X-chromosome was studied through genomic DNA digestion with Hpa II. The CAG repeat region was amplified by polymerase chain reaction (PCR) and analysed by GeneScan. Results The nCAG and the frequency of severe skewed X-inactivation did not differ between normal women and patients. The nCAG median in genotype A was 20.7 (IQR 2.3) for Prader I + II, 22.5 (3.6) for Prader III and 21 (2.9) for Prader IV + V (P < 0.05 for Prader III and Prader IV + V). The nCAG median in genotype B was 21.3 (1.1) for Prader I + II, 20.5 (2.9) for Prader III and 22 (2.8) for Prader IV + V (P > 0.05). A significant difference was found regarding the nCAG median in patients presenting Prader III from genotypes A and B. Conclusions We observed great variability in the degree of external genitalia virilization in both CYP21A2 genotypes, and we showed that the CAG repeats of the androgen receptor gene influences this phenotypic variability.
Resumo:
P>Background Congenital adrenal hyperplasia caused by classic 21-hydroxylase deficiency (21OHD) is an autosomal recessive disorder with a high prevalence of asymptomatic heterozygote carriers (HTZ) in the general population, making case detection desirable by routine methodology. HTZ for classic and nonclassic (NC) forms have basal and ACTH-stimulated values of 17-hydroxyprogesterone (17OHP) that fail to discriminate them from the general population. 21-Deoxycortisol (21DF), an 11-hydroxylated derivative of 17OHP, is an alternative approach to identify 21OHD HTZ. Objective To determine the discriminating value of basal and ACTH-stimulated serum levels of 21DF in comparison with 17OHP in a population of HTZ for 21OHD (n = 60), as well as in NC patients (n = 16) and in genotypically normal control subjects (CS, n = 30), using fourth generation tandem mass spectrometry after HPLC separation (LC-MS/MS). Results Basal 21DF levels were not different between HTZ and CS, but stimulated values were increased in the former and virtually nonresponsive in CS. Only 17 center dot 7% of the ACTH-stimulated 21DF levels overlapped with CS, when compared to 46 center dot 8% for 17OHP. For 100% specificity, the sensitivities achieved for ACTH-stimulated 21DF, 17OHP and the quotient [(21DF + 17OHP)/F] were 82 center dot 3%, 53 center dot 2% and 87%, using cut-offs of 40, 300 ng/dl and 46 (unitless), respectively. Similar to 17OHP, ACTH-stimulated 21DF levels did not overlap between HTZ and NC patients. A positive and highly significant correlation (r = 0 center dot 846; P < 0 center dot 001) was observed between 21DF and 17OHP pairs of values from NC and HTZ. Conclusion This study confirms the superiority of ACTH-stimulated 21DF, when compared to 17OHP, both measured by LC-MS/MS, in identifying carriers for 21OHD. Serum 21DF is a useful tool in genetic counselling to screen carriers among relatives in families with affected subjects, giving support to molecular results.
Resumo:
Male patients with an extra sex chromosome or autosome are expected to present primary hypogonadism at puberty owing to meiotic germ-cell failure. Scarce information is available on trisomy 21, a frequent autosomal aneuploidy. Our objective was to assess whether trisomy 21 presents with pubertal-onset, germ-cell specific, primary hypogonadism in males, or whether the hypogonadism is established earlier and affects other testicular cell populations. We assessed the functional status of the pituitary-testicular axis, especially Sertoli cell function, in 117 boys with trisomy 21 (ages: 2 months-20 year). To compare with an adequate control population, we established reference levels for serum anti-Mullerian hormone (AMH) in 421 normal males, from birth to adulthood, using a recently developed ultrasensitive assay. In trisomy 21, AMH was lower than normal, indicating Sertoli cell dysfunction, from early infancy, independently of the existence of cryptorchidism. The overall prevalence rate of AMH below the 3rd percentile was 64.3% in infants with trisomy 21. Follicle-stimulating hormone was elevated in patients <6 months and after pubertal onset. Testosterone was within the normal range, but luteinizing hormone was elevated in most patients <6 months and after pubertal onset, indicating a mild Leydig cell dysfunction. We conclude that in trisomy 21, primary hypogonadism involves a combined dysfunction of Sertoli and Leydig cells, which can be observed independently of cryptorchidism soon after birth, thus prompting the search for new hypotheses to explain the pathophysiology of gonadal dysfunction in autosomal trisomy.
Resumo:
Double aneuploidy, (48,XXY,+21) of maternal origin in a child born to a 13-year-old mother: evoluation of the maternal folate metabolism: The occurrence of non-mosaic double trisomy is exceptional in newborns. In this paper, a 48,XXY,+21 child, the parental origin of the extra chromosomes and the evaluation of the maternal folate metabolism are presented. The infant was born to a 13-year-old mother and presented with the typical clinical features of Down syndrome (DS). The origin of the additional chromosomes was maternal and most likely resulted from errors during the first meiotic division. Molecular analysis of 12 genetic polymorphisms involved in the folate metabolism revealed that the mother is heterozygous for the MTHFR C677T and TC2 A67G polymorphisms, and homozygous for the mutant MTRR A66G polymorphism. The maternal homocysteine concentration was 4.7 mu mol/L, a value close to the one considered as a risk factor for DS in our previous study. Plasma methylmalonic acid and serum folate concentrations were 0.17 mu mol/L and 18.4 ng/mL, respectively. It is possible that the presence of allelic variants for the folate metabolism and Hey concentration might have favored errors in chromosomal disjunction (hiring gametogenesis in this young mother. To our knowledge, this is the first patient with non-mosaic Down-Klinefelter born to a teenage mother, resulting from a rare fertilization event combining an abnormal 25,XX,+21 oocyte and a 23,Y spermatozoon.
Resumo:
Central giant-cell granulomas are benign, but occasionally aggressive, lesions that traditionally have been treated surgically. 21 cases of central giant-cell granuloma of the jaw were treated with intralesional injection of corticosteroids. The treatment protocol adopted was intralesional injection of 20 mg/ml triamcinolone hexacetonide diluted in an anaesthetic solution of 2% lidocaine/epinephrine 1:200,000 in the proportion 1:1; 1.0 ml of the solution was infiltrated for every 1 cm(3) of radiolucid area of the lesion, totalling 6 biweekly applications. Ten patients had aggressive lesions and 11 nonaggressive. Two patients showed a negative response to the treatment and underwent surgical resection, 4 showed a moderate response and 15 a good response. 8 of the 19 who had a moderate-to-good response to the drug treatment underwent osteoplasty to reestablish facial aesthetics. In these cases, only mature or dysplastic bone was observed, with the presence or absence of rare giant multinucleated cells. The advantages of this therapy are its less-invasive nature, the probable lower cost to the patient, lower risk and the ability to treat the lesion surgically in the future, if necessary.
Resumo:
The focus of this paper is the social construction of physical education teacher education (PETE) and its fate within the broader process of curriculum change in the physical activity field. Our task is to map the dimensions of a research program centered on the social construction of the physical activity field and PETE in higher education. Debates in the pages of Quest and elsewhere over the past two decades have highlighted not only the contentious nature of PETE practices and structures but also that PETE is changing. This paper offers one way of making sense of the ongoing process of contestation and struggle through the presentation of a theoretical framework. This framework, primarily drawing upon the work of Lave and Wenger (1991) and Bernstein (1990, 1996), is described before it is used to study the social construction of PETE in Australia. We assess the progress that has been made in developing this research program, and the questions already evident for further developments of a program of study of the physical activity field in higher education.