696 resultados para AEROSOLS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE: Recent work practices in the conservation and restoration involve the use of cyclododecane (CDD, CAS 294-62-2) to protect fragile artifacts during their handling or transportation. Little is known about its toxicity, and no previous exposure has been reported. A short field investigation was conducted to characterize the exposure conditions to both CDD vapors and aerosols.METHODS: Measurements were conducted in the laboratory of conservation and restoration of the archeological service in Bern (Switzerland). Three indoor and four outdoor typical work situations, either during brush or spray gun applications, were investigated. Measurements were performed on charcoal adsorbent tube and analyzed by a gas chromatograph equipped with a flame ionization detector.RESULTS: Measurements have been conducted during both brush and spray gun applications. Indoor exposures were of 0.75-15.5 mg/m(3), while outdoors exposures were 19.5-53.9 mg/m(3). Exposures appear to be extremely localized due to both physicochemical properties and application methods of the CDD. Vapor exposure increases dramatically with the confinement of the workplace.CONCLUSION: Preventive measures should be undertaken to limit as much as possible these exposures. Field work in confined areas (ditches, underground) is of particular concern. CDD-coated artifacts or materials should be stored in ventilated areas to avoid delayed exposures. [Authors]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Les endotoxines aéroportées sont connues pour provoquer des inflammations des voies respiratoires et une altération des fonctions pulmonaires. De très nombreuses études ont montré que les professions où l'on manipule de la matière organique (manipulation de déchets, élevage d'animaux, cultures maraîchères et céréalières, transformation d'aliments, etc...) sont sujettes à une exposition professionnelle aux endotoxines très élevée. Ce qui génère l'apparition de divers problèmes de santé, notamment des problèmes respiratoires. Paradoxalement, plusieurs études récentes, en particulier sur des éleveurs, ont montré que l'exposition aux endotoxines pouvait avoir des effets bénéfiques pour la santé en prévenant les allergies et les maladies atopiques. De plus, il a été démontré que les enfants ayant passé leurs premières années de vie dans des exploitations agricoles avec des animaux ont une probabilité moindre de développer des allergies à l'âge adulte. L'article original et la revue bibliographique analysés dans cette note traitent de cette dualité des effets sur la santé d'une exposition prolongée aux endotoxines. [Auteur]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Miniature diffusion size classifiers (miniDiSC) are novel handheld devices to measure ultrafine particles (UFP). UFP have been linked to the development of cardiovascular and pulmonary diseases; thus, detection and quantification of these particles are important for evaluating their potential health hazards. As part of the UFP exposure assessments of highwaymaintenance workers in western Switzerland, we compared a miniDiSC with a portable condensation particle counter (P-TRAK). In addition, we performed stationary measurements with a miniDiSC and a scanning mobility particle sizer (SMPS) at a site immediately adjacent to a highway. Measurements with miniDiSC and P-TRAK correlated well (correlation of r = 0.84) but average particle numbers of the miniDiSC were 30%âeuro"60% higher. This difference was significantly increased for mean particle diameters below 40 nm. The correlation between theminiDiSC and the SMPSduring stationary measurements was very high (r = 0.98) although particle numbers from the miniDiSC were 30% lower. Differences between the three devices were attributed to the different cutoff diameters for detection. Correction for this size dependent effect led to very similar results across all counters.We did not observe any significant influence of other particle characteristics. Our results suggest that the miniDiSC provides accurate particle number concentrations and geometric mean diameters at traffic-influenced sites, making it a useful tool for personal exposure assessment in such settings.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Traditional culture-dependent methods to quantify and identify airborne microorganisms are limited by factors such as short-duration sampling times and inability to count nonculturableor non-viable bacteria. Consequently, the quantitative assessment of bioaerosols is often underestimated. Use of the real-time quantitative polymerase chain reaction (Q-PCR) to quantify bacteria in environmental samples presents an alternative method, which should overcome this problem. The aim of this study was to evaluate the performance of a real-time Q-PCR assay as a simple and reliable way to quantify the airborne bacterial load within poultry houses and sewage treatment plants, in comparison with epifluorescencemicroscopy and culture-dependent methods. The estimates of bacterial load that we obtained from real-time PCR and epifluorescence methods, are comparable, however, our analysis of sewage treatment plants indicate these methods give values 270-290 fold greater than those obtained by the ''impaction on nutrient agar'' method. The culture-dependent method of air impaction on nutrient agar was also inadequate in poultry houses, as was the impinger-culture method, which gave a bacterial load estimate 32-fold lower than obtained by Q-PCR. Real-time quantitative PCR thus proves to be a reliable, discerning, and simple method that could be used to estimate airborne bacterial load in a broad variety of other environments expected to carry high numbers of airborne bacteria. [Authors]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The interest in solar ultraviolet (UV) radiation from the scientific community and the general population has risen significantly in recent years because of the link between increased UV levels at the Earth's surface and depletion of ozone in the stratosphere. As a consequence of recent research, UV radiation climatologies have been developed, and effects of some atmospheric constituents (such as ozone or aerosols) have been studied broadly. Correspondingly, there are well-established relationships between, for example, total ozone column and UV radiation levels at the Earth's surface. Effects of clouds, however, are not so well described, given the intrinsic difficulties in properly describing cloud characteristics. Nevertheless, the effect of clouds cannot be neglected, and the variability that clouds induce on UV radiation is particularly significant when short timescales are involved. In this review we show, summarize, and compare several works that deal with the effect of clouds on UV radiation. Specifically, works reviewed here approach the issue from the empirical point of view: Some relationship between measured UV radiation in cloudy conditions and cloud-related information is given in each work. Basically, there are two groups of methods: techniques that are based on observations of cloudiness (either from human observers or by using devices such as sky cameras) and techniques that use measurements of broadband solar radiation as a surrogate for cloud observations. Some techniques combine both types of information. Comparison of results from different works is addressed through using the cloud modification factor (CMF) defined as the ratio between measured UV radiation in a cloudy sky and calculated radiation for a cloudless sky. Typical CMF values for overcast skies range from 0.3 to 0.7, depending both on cloud type and characteristics. Despite this large dispersion of values corresponding to the same cloud cover, it is clear that the cloud effect on UV radiation is 15–45% lower than the cloud effect on total solar radiation. The cloud effect is usually a reducing effect, but a significant number of works report an enhancement effect (that is increased UV radiation levels at the surface) due to the presence of clouds. The review concludes with some recommendations for future studies aimed to further analyze the cloud effects on UV radiation

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction. Agricultural workers are among the professional groups most at risk of developing acute or chronic respiratory problems. Despite this fact, the etiology of these occupational diseases is poorly known, even in important sectors of agriculture such as the crops sector. Cereals can be colonized by a large number of fungal species throughout the plants' growth, but also during grain storage. Some of these fungi deliver toxins that can have a serious impact on human health when they are ingested via wheat products. Although International and European legislation on contaminants in food, including mycotoxins, include measures to ensure protection of public health by setting down the maximum levels for certain contaminants, the risks associated with the inhalation of such molecules during grain handling remains poorly documented. Goal of study. This project's objective was to characterize worker exposure to pathogenic, irritative or allergenic microorganisms and to identify the abiotic or biotic factors that reduce the growth of these microorganisms in crops. Indeed, the proliferation of microorganisms on wheat is dependent on temperature, rainfall and human disturbance (e.g. usage of tillage, addition of fungicides). A change in the concentration of these microorganisms in the substrate will directly result in a change in the concentration of aerosolized particles of the same microorganisms. Therefore, the exposure of worker to bioaérosols will also change. The Vaud region of Switzerland is a perfect region for conduct such a project as weather conditions vary and agricultural land management programs are divers at a small geographic scale. Methods. Bioaerosols and wheat dust have been sampled during wheat harvesting of summer 2010 at 100 sites uniformly distributed in the Vaud region that are representative of the different agriculture practices. Personal exposure has been evaluated for different wheat related activities: harvesting, grain unload, baling straw, the cleaning of harvesters and silos. Aerosols have been sampled at a rate of 2L/min between 15 min to 4 hours (t) on a 5m PVC filter for estimating the total dust inhaled, on gelatine filter for the identification and quantification of molds, and on a 0.45um polycarbonate filter for endotoxin quantification. Altitude, temperature and annual average rainfall were considered for each site. The physical and chemical characteristics of soils were determined using the methods in effect at Sol Council (Nyon). Total dust has been quantified following NIOSH 0500 method. Reactive endotoxine activity has been determined with Limulus Amebocyte Lysate Assay. All molds have been identified by the pyrosequencing of ITS2 amplicons generated from bioaerosol or wheat dust genomic DNA. Results & Conclusions. Our results confirm the previous quantitative data on the worker exposure to wheat dust. In addition, they show that crop workers are systematically exposed to complex mixtures of allergens, irritants or cytotoxic components. The novelty of our study is the systematic detection of molds such as Fusarium - that is a mycotoxins producer - in the bioaerosols. The results are interpreted by taking in account the agriculture practice, the Phosphorus : Carbon : Nitrogen ratio of the soil, the altitude and the average of rainy days per year.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La manipulation de végétaux ou de débris végétaux dans des espaces fermés (hangar pour le compostage, serres pour les cultures) est fréquemment effectuée en France. Néanmoins, le niveau d'exposition des travailleurs des différentes filières concernées aux bioaérosols dégagés par ces substrats, est peu connu. Dans cette note, deux études ont été choisies pour illustrer l'ampleur de ce type d'exposition dans des espaces fermés. La première publication concerne un centre de compostage et la deuxième publication cible des serres de culture de la tomate et du concombre. L'extrapolation des résultats obtenus à partir de prélèvements d'ambiance à l'exposition professionnelle des travailleurs est tout particulièrement discutée.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

INTRODUCTION: Occupational exposure to bioaerosols in wastewater treatment plants (WWTP) and its consequence on workers׳ health are well documented. Most studies were devoted to enumerating and identifying cultivable bacteria and fungi, as well as measuring concentrations of airborne endotoxins, as these are the main health-related factors found in WWTP. Surprisingly, very few studies have investigated the presence and concentrations of airborne virus in WWTP. However, many enteric viruses are present in wastewater and, due to their small size, they should become aerosolized. Two in particular, the norovirus and the adenovirus, are extremely widespread and are the major causes of infectious gastrointestinal diseases reported around the world. The third one, hepatitis E virus, has an emerging status. GOAL AND METHODS: This study׳s objectives were to detect and quantify the presence and concentrations of 3 different viruses (adenovirus, norovirus and the hepatitis E virus) in air samples from 31 WWTPs by using quantitative polymerase chain reaction (qPCR) during two different seasons and two consecutive years. RESULTS: Adenovirus was present in 100% of summer WWTP samples and 97% of winter samples. The highest airborne concentration measured was 2.27×10(6) genome equivalent/m(3) and, on average, these were higher in summer than in winter. Norovirus was detected in only 3 of the 123 air samples, and the hepatitis E virus was not detected. CONCLUSIONS: Concentrations of potentially pathogenic viral particles in WWTP air are non-negligible and could partly explain the work-related gastrointestinal symptoms often reported in employees in this sector.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Measurements and simulations were performed to assess workers' exposure to solvent vapors and aerosols during the waterproofing of a tiled surface. This investigation followed two recent incidents in the same company where workers experienced acute respiratory illness after spraying a stain-repellent resin containing fluorinated polymers on stone-tiled walls and floors. Because the waterproofing activity had been done for years at the tile company without encountering any exposure problems prior to these cases, it was strongly suspected that the incidents were linked to a recent change in the composition of the coating mixture. Experimental measurements and simulations indicated that the emission rate of particles smaller than 10 microm may be estimated at 0.66 mg/sec (SD 0.10) for the old resin and at 0.37 mg/sec (SD 0.04) for the new one. The measurement of the solvent emission rate from surfaces coated with the two resins indicated that shortly after spraying, the emission was in the range of 18 to 20 mg/sec x m2 and was similar for both products. Solvent and overspray emission rates were introduced in a two-zone compartment model. The results obtained in the near-field indicate significant exposure to overspray mist (7 and 34 mg/m3 for new resin) and solvent vapors (80 to 350 ppm for the new resin). It was also shown that the introduction of the new resin tended to significantly decrease the levels of solvents and particulates in the workers' breathing zone. These results strongly suggest that cases of acute respiratory illness are related to the specific toxicity of the fluorinated polymer itself. The fact that the same polymer is used in various commercial products raises concern regarding other possible occupational and domestic exposures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The atmospheric nuclear testing in the 1950s and early 1960s and the burn-up of the SNAP-9A satellite led to large injections of radionuclides into the stratosphere. It is generally accepted that current levels of plutonium and caesium radionuclides in the stratosphere are negligible. Here we show that those radionuclides are present in the stratosphere at higher levels than in the troposphere. The lower content in the troposphere reveals that dry and wet deposition efficiently removes radionuclides within a period of a few weeks to months. Since the stratosphere is thermally stratified and separated from the troposphere by the tropopause, radioactive aerosols remain longer. We estimate a mean residence time for plutonium and caesium radionuclides in the stratosphere of 2.5-5 years. Our results also reveal that strong volcanic eruptions like Eyjafjallajökull in 2010 have an important role in redistributing anthropogenic radionuclides from the stratosphere to the troposphere.