988 resultados para ACID DOPED POLYBENZIMIDAZOLE
Resumo:
Background and Purpose - Epidemiological and laboratory studies suggest that increasing concentrations of plasma homocysteine ( total homocysteine [tHcy]) accelerate cardiovascular disease by promoting vascular inflammation, endothelial dysfunction, and hypercoagulability. Methods - We conducted a randomized controlled trial in 285 patients with recent transient ischemic attack or stroke to examine the effect of lowering tHcy with folic acid 2 mg, vitamin B-12 0.5 mg, and vitamin B-6 25 mg compared with placebo on laboratory markers of vascular inflammation, endothelial dysfunction, and hypercoagulability. Results - At 6 months after randomization, there was no significant difference in blood concentrations of markers of vascular inflammation (high-sensitivity C-reactive protein [P = 0.32]; soluble CD40L [ P = 0.33]; IL-6 [P = 0.77]), endothelial dysfunction ( vascular cell adhesion molecule-1 [P = 0.27]; intercellular adhesion molecule-1 [P = 0.08]; von Willebrand factor [P = 0.92]), and hypercoagulability (P-selectin [P = 0.33]; prothrombin fragment 1 and 2 [P = 0.81]; D-dimer [P = 0.88]) among patients assigned vitamin therapy compared with placebo despite a 3.7-mumol/L (95% CI, 2.7 to 4.7) reduction in total homocysteine (tHcy). Conclusions - Lowering tHcy by 3.7 mumol/L with folic acid-based multivitamin therapy does not significantly reduce blood concentrations of the biomarkers of inflammation, endothelial dysfunction, or hypercoagulability measured in our study. The possible explanations for our findings are: ( 1) these biomarkers are not sensitive to the effects of lowering tHcy (eg, multiple risk factor interventions may be required); ( 2) elevated tHcy causes cardiovascular disease by mechanisms other than the biomarkers measured; or ( 3) elevated tHcy is a noncausal marker of increased vascular risk.
Resumo:
The electrochemical treatment of a synthetic tannery wastewater, prepared with several compounds used by finishing tanneries, was studied in chloride-free media. Boron-doped diamond (Si/BDD), antimony-doped tin dioxide (Ti/SnO(2)-Sb), and iridium-antimony-doped tin dioxide (Ti/SnO(2)-Sb-Ir)were evaluated as anode. The influence of pH and current density on the treatment was assessed by means of the parameters used to measure the level of organic contaminants in the wastewater; i.e., total phenols, chemical oxygen demand (COD), total organic carbon (TOC), and absorbance. Results showed that faster decrease in these parameters occurred when the Si/BDD anode was used. Good results were obtained with the Ti/SnO(2)-Sb anode, but its complete deactivation was reached after 4h of electrolysis at 25 mA cm(-2), indicating that the service life of this electrode is short. The Ti/SnO(2)-Sb-Ir anode is chemically and electrochemically more stable than the Ti/SnO(2)-Sb anode, but it is not suitable for the electrochemical treatment under the studied conditions. No significant changes were observed for electrolyses performed at different pH conditions with Si/BDD, and this electrode led to almost complete mineralization after 4 h of electrolysis at 100mAcm(-2). The increase in current density resulted in faster wastewater oxidation, with lower current efficiency and higher energy consumption. Si/BBD proved to be the best electrodic material for the direct electrooxidation of tannery wastewaters. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
One major challenge for the widespread application of direct methanol fuel cells (DMFCs) is to decrease the amount of platinum used in the electrodes, which has motivated a search for novel electrodes containing platinum nanoparticles. In this study, platinum nanoparticles were electrodeposited on layer-by-layer (LbL) films from TiO(2) and poly(vinyl sulfonic) (PVS), by immersing the films into a H(2)PtCl(6) solution and applying a 100 mu A current during different electrode position times. Scanning tunnel microscopy (STM) and atomic force microscopy (AFM) images showed increased platinum particle size and electrode roughness for increasing electrodeposition times. The potentiodynamic profile of the electrodes indicated that oxygen-like species in 0.5 mol L(-1) H(2)SO(4) were formed at less positive potentials for the smallest platinum particles. Electrochemical impedance spectroscopy measurements confirmed the high reactivity for the water dissociation and the large amount of oxygen-like species adsorbed on the smallest platinum nanoparticles. This high oxophilicity of the smallest nanoparticles was responsible for the electrocatalytic activity of Pt-TiO(2)/PVS systems for methanol electrooxidation, according to the Langmuir-Hinshelwood bifunctional mechanism. Significantly, the approach used here combining platinum electrodeposition and LbL matrices allows one to both control the particle size and optimize methanol electrooxidation, being therefore promising for producing membrane-electrode assemblies of DMFCs.
Resumo:
In this paper we present some result on sol-gel derived silica-hafnia systems. In particular we focus on fabrication, morphological and spectroscopic assessment of Er(3+)-activated thin films. Two examples of silica-hafnia-derived waveguiding glass ceramics, prepared by top-down and bottom-up techniques are reported, and the main optical properties are discussed. Finally, some properties of activated microspherical resonators, having a silica core, obtained by melting the end of a telecom fiber, coated with an Er(3+)-doped 70SiO(2)-30HfO(2) film, are presented. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
We investigated three amino derivatives of ortho-aminobenzoic or anthranilic acid (o-Abz): a) 2-Amino-benzamide (AbzNH(2)); b) 2-Amino-N-methyl-benzamide (AbzNHCH(3)) and c) 2-Amino-N-N`-dimethyl-bezamide (AbzNH(CH(3))(2)), see Scheme 1. We describe the results of ab-initio calculations on the structural characteristics of the compounds and experimental studies about solvent effects in their absorption and steady-state and time-resolved emission properties. Ab-initio calculations showed higher stability for the rotameric conformation in which the oxygen of carbonyl is near to the nitrogen of ortho-amino group. The derivatives present decrease in the delocalization of pi electron, and absorption bands are blue shifted compared to the parent compound absorption, the extent of the effect increasing from to Abz-NH(2) to Abz-NHCH(3) Abz-NH(CH(3))(2). Measurements performed in several solvents have shown that the the dependence of Stokes shift of the derivatives with the orientational polarizability follows the Onsager-Lippert model for general effects of solvent. However deviation occurred in solvents with properties of Bronsted acids, or electron acceptor characteristics, so that hydrogen bonds formed with protic solvents predominates over intramolecular hydrogen bond. In most solvents the fluorescence decay of AbzNH(2) and AbzNHCH(3) was fitted to a single exponential with lifetimes around 7.0 ns and no correlation with polarity of the solvent was observed. The fluorescence decay of AbzN(CH(3))(2) showed lifetimes around 2.0 ns, consistent with low quantum yield of the compound. The spectroscopic properties of the monoamino derivative AbzNHCH(3) are representative of the properties presented by Abz labelled peptides and fatty acids previously studied.
Resumo:
The objective of the present study was to characterize the innate immune responses induced by in vitro stimulation of bovine primary mammary epithelial cells (bMEC) using gram-negative lipopolysaccharide (LPS) and gram-positive lipoteichoic acid (LTA) bacterial cell wall components. Quantitative real-time PCR (qRT-PCR) was employed to examine the mRNA expression of a panel of 22 cytokines, chemokines, beta-defensins and components of the Toll-Like Receptor signaling pathway. Stimulation of bMEC with LPS for 24 h elicited a marked increase in mRNA expression for IL-1 beta, IL-8, TNF alpha, CXCL6 and beta-defensin while members of the Toll-Like Receptor pathway.. although present, were largely unaffected. Surprisingly, stimulation of these cells with LTA for 24 h did not significantly alter the expression of these genes. A time course of the expression of IL-1 beta, IL-8, TNF alpha, CXCL6 and beta-defensin was subsequently performed. The mRNA levels of all genes increased rapidly after stimulation for 2-4 h with both LPS and LTA but only the former treatment resulted in sustained responses. In contrast, the increased gene expression for LTA stimulated cells returned to resting levels after 8-16 h with the exception of beta-defensin, which remained up-regulated. The limited and unsustained cytokine response to LTA may explain why mastitis caused by gram-positive bacteria has greater potential for chronic intra-mammary infection than gram-negative infection. It was concluded that bovine mammary epithelial cells have a strong but differential capacity to mount innate immune responses to bacterial cell wall components. Crown Copyright (c) 2005 Published by Elsevier Ltd. All rights reserved.
Resumo:
The title compound, C(8)H(14)N(2)O(5)S 2(H(2)O), 2-amino-3-(N-oxipiridin-4-ilsulfanil)-propionic acid dihydrate, is obtained by the reaction of cysteine and 4-nitropyridine N-oxide in dimethylformamide, removing the NO(2) group from the benzene ring and releasing nitrous acid into the solution. The molecule exists as a Zwitterion. Hydrogen bond interactions involving the title molecule and water molecules allow the formation of R(5)(5)(23) edge fused rings parallel to (010). Water molecules are connected independently, forming infinite chains (wires), in square wave form, along the b-axis. The chirality of the cysteine molecule used in the synthesis is retained in the title molecule. A density functional theory (DFT) optimized structure at the B3LYP/6-311G(3df,2p) level allows comparison of calculated and experimental IR spectra.
Resumo:
N,N-Dimethyl-pyrrolidinium iodide, and the effect of doping with LiI, has been investigated using DSC, NMR, and impedance spectroscopy. It was found that the addition of a small amount of LiI enhances the ionic conductivity by LIP to 3 orders of magnitude for this ionic solid. Furthermore, a slight decrease in phase transition onset temperatures, as well as the appearance of a superimposed narrow line in the H-1 NMR spectra with dopant, suggest that the LiI facilitates the mobility of the matrix material, possibly by the introduction of vacancies within the lattice. Li-7 NMR line width measurements reveal a narrow Li line width, decreasing in width and increasing in intensity with temperature, indicating mobile Li ions.
Resumo:
Motivated by the unconventional properties and rich phase diagram of NaxCoO2 we consider the electronic and magnetic properties of a two-dimensional Hubbard model on an isotropic triangular lattice doped with electrons away from half-filling. Dynamical mean-field theory (DMFT) calculations predict that for negative intersite hopping amplitudes (t < 0) and an on-site Coulomb repulsion, U, comparable to the bandwidth, the system displays properties typical of a weakly correlated metal. In contrast, for t > 0 a large enhancement of the effective mass, itinerant ferromagnetism, and a metallic phase with a Curie-Weiss magnetic susceptibility are found in a broad electron doping range. The different behavior encountered is a consequence of the larger noninteracting density of states (DOS) at the Fermi level for t > 0 than for t < 0, which effectively enhances the mass and the scattering amplitude of the quasiparticles. The shape of the DOS is crucial for the occurrence of ferromagnetism as for t > 0 the energy cost of polarizing the system is much smaller than for t < 0. Our observation of Nagaoka ferromagnetism is consistent with the A-type antiferromagnetism (i.e., ferromagnetic layers stacked antiferromagnetically) observed in neutron scattering experiments on NaxCoO2. The transport and magnetic properties measured in NaxCoO2 are consistent with DMFT predictions of a metal close to the Mott insulator and we discuss the role of Na ordering in driving the system towards the Mott transition. We propose that the Curie-Weiss metal phase observed in NaxCoO2 is a consequence of the crossover from a bad metal with incoherent quasiparticles at temperatures T > T-* and Fermi liquid behavior with enhanced parameters below T-*, where T-* is a low energy coherence scale induced by strong local Coulomb electron correlations. Our analysis also shows that the one band Hubbard model on a triangular lattice is not enough to describe the unusual properties of NaxCoO2 and is used to identify the simplest relevant model that captures the essential physics in NaxCoO2. We propose a model which allows for the Na ordering phenomena observed in the system which, we propose, drives the system close to the Mott insulating phase even at large dopings.
Resumo:
A diligent and careful examination of the mouth and oral structures has been historically deficient in revealing premalignant and malignant oral lesions. Conventional screening practice for oral neoplastic lesions involves visual scrutiny of the oral tissues with the naked eye under projected incandescent or halogen illumination. Visualization is the principal strategy used to find patients with lesions at risk for malignant transformation; hence, any procedure which highlights neoplastic lesions should aid the clinician. This pilot study examined the usefulness of acetic acid wash and chemiluminescent light (Vizilite) in enhancing visualization of oral mucosal white lesions, and its ability to highlight malignant and potentially malignant lesions. Fifty five patients referred for assessment of a white lesion, were prospectively screened with Vizilite, and an incisional biopsy performed for a definitive diagnosis. The age, sex, and smoking status of all patients were recorded, and all lesions were photographed. The visibility, location, size, border, and presence of satellite lesions, were also recorded. The Vizilite tool enhanced intraoral visualization of 26 white lesions, but it could not distinguish between epithelial hyperplasia, dysplasia, or carcinoma. Indeed, all lesions appeared ‘‘aceto-white’’, regardless of the definitive diagnosis. On one occasion, Vizilite aided in the identification of a satellite lesion that was not observed by routine visual inspection. Vizilite appears to be a useful visualization tool, but it does not aid in the identification of malignant and potentially malignant lesions of the oral mucosa.
Resumo:
OBJECTIVE: To evaluate the influence of lactic acid on immune mediator release from vaginal epithelial cells. METHODS: The human vaginal epithelial cell line, VK2/E6E7, was cultured in the presence or absence of physiological concentrations of lactic acid, and in the presence or absence of the viral Toll-like receptor 3 agonist, poly (inosinic acid: cytidylic acid). Supernatants were assayed by enzyme-linked immunosorbent assay (ELISA) for interleukin (IL)-1 beta, IL-6, IL-8, IL-23, transforming growth factor (TGF)-beta and secretory leukocyte protease inhibitor. RESULTS: Vaginal epithelial cells spontaneously released IL-1 beta (25.9 pg/mL), IL-8 (1.0 ng/mL), TGF-beta (175 pg/mL), and secretory leukocyte protease inhibitor (33.8 ng/mL). Only TGF-beta production was marginally enhanced (49%) by addition of lactic acid alone. Poly (inosinic acid: cytidylic acid) by itself stimulated the release of IL-6 (305 pg/mL) and enhanced IL-8 production (2.8 ng/mL). The combination of poly (inosinic acid: cytidylic acid) and lactic acid markedly increased IL-8 production (5.0 ng/mL) and induced the release of IL-1 beta (96.2 pg/mL). The poly (inosinic acid: cytidylic acid)-mediated lactic acid effect on IL-1 beta and IL-8 release was abrogated when the lactic acid was neutralized or if acetic acid was substituted for lactic acid. CONCLUSION: Lactic acid enhances the release of selective mediators from vaginal epithelial cells and stimulates antiviral immune responses. (Obstet Gynecol 2011;118:840-6) DOI: 10.1097/AOG.0b013e31822da9e9
Resumo:
Lactic acid is the predominant acid present in the vagina. We evaluated the consequences of lactic acid, at physiological levels present in the vagina, on cytokine responses of peripheral blood mononuclear cells (PBMCs) obtained from 10 individuals in the presence or absence of bacterial lipopolysaccharide. Preincubation of PBMCs in 15 mM lactic acid before the addition of lipopolysaccharide resulted in a 246% mean increase in interleukin-23 (IL-23) secretion over that released in the presence of lipopolysaccharide alone (P=0.0068). The lipopolysaccharide-induced production of tumor necrosis factor-alpha, IL-6, IL-10 and IL-12 was unaffected by lactic acid. IL-23 stimulation was not observed if the lactic acid was neutralized before its addition to the culture medium or if hydrochloric acid was substituted for lactic acid. In the absence of lipopolysaccharide, lactic acid did not stimulate the production of IL-23 or any of the other cytokines. The increase in IL-23 production was proportional to the lactic acid concentration over a 15-60 mM range. We conclude that at body sites characterized by lactic acid accumulation, such as in the human vagina, exposure to gram-negative bacteria results in selective IL-23 production, leading to a subsequent preferential stimulation of the Th17 T lymphocyte pathway.
Resumo:
The search for an ideal filler for soft tissue augmentation still continues. Because aging changes are continuous, temporary fillers should be preferred against permanent ones. Since 1999, the poly-L-lactic acid filler (PLA) has been marketed in Europe as Newfill. As a synthetic biocompatible polymer, PLA originally was used in suture materials and screws. In 2004, the U.S. Food and Drug Administration approved PLA under the name of Sculptra for the treatment of human immunodeficiency virus-related facial lipoatrophy. This study aimed to evaluate a 3-year follow-up investigation into the effect of PLA implant injection for the treatment of sunken nasolabial folds. Between October 2003 and February 2004, 10 women with a median age of 54 years (range, 43-60 years) were injected with polylactic acid hydrogel (Newfill) in the nasolabial fold area for aesthetic reasons. All the patients underwent three injections: one injection per month for 3 months. Evaluation of the results based on clinical examination and photography was performed at each session, at 6 months, and then 36 months after the third session. Injectable PLA was able to correct nasolabial folds successfully with a more lasting result than absorbable fillers commonly used in clinical practice, such as hyaluronic acid and collagen. Careful and standardized photographic documentation is indispensable.