995 resultados para AC current
Resumo:
It is widely believed that the second-generation high-temperature superconducting (2G HTS) tapes with magnetic substrates suffer higher transport loss compared to those with non-magnetic substrates. To test this, we prepared two identical coils with magnetic and non-magnetic substrates, respectively. The experimental result was rather surprising that they generated roughly the same amount of transport loss. We used finite element method to understand this result. It is found that, unlike in the single tape where the magnetic field-dependent critical current characteristic can be neglected and the effect of magnetic substrate dominates, the magnetic field-dependent critical current characteristic of 2G tape plays as an equally important role as magnetic substrate in terms of HTS coils. © 2012 American Institute of Physics.
Resumo:
Various MgB2 wires with different sheath materials provided by Hyper Tech Research Inc., have been tested in the superconducting fault current limiter (SFCL) desktop tester at 24-26K in a self-field. Samples 1 and 2 are similarly fabricated monofilamentary MgB2 wires with a sheath of CuNi, except that sample 2 is doped with SiC and Mg addition. Sample 3 is a CuNi sheathed multifilamentary wire with Cu stabilization and Mg addition. All the samples with Nb barriers have the same diameter of 0.83mm and superconducting fractions ranging from 15% to 27% of the total cross section. They were heat-treated at temperatures of 700 °C for a hold time of 20-40min. Current limiting properties of MgB2 wires subjected to pulse overcurrents have been experimentally investigated in an AC environment in the self-field at 50Hz. The quench currents extracted from the pulse measurements were in a range of 200-328A for different samples, corresponding to an average engineering critical current density (Je) of around 4.8 × 10 4Acm-2 at 25K in the self-field, based on the 1νVcm-1 criterion. This work is intended to compare the quench behaviour in the Nb-barrier monofilamentary and multifilamentary MgB2 wires with CuNi and Cu/CuNi sheaths. The experimental results can be applied to the design of fault current limiter applications based on MgB2 wires. © IOP Publishing Ltd.
Resumo:
A superconducting fault current limiter (SFCL) in series with a downstream circuit breaker could provide a viable solution to controlling fault current levels in electrical distribution networks. In order to integrate the SFCL into power grids, we need a way to conveniently predict the performance of the SFCL in a given scenario. In this paper, short circuit analysis based on the electromagnetic transient program was used to investigate the operational behavior of the SFCL installed in an electrical distribution grid. System studies show that the SFCL can not only limit the fault current to an acceptable value, but also mitigate the voltage sag. The transient recovery voltage (TRV) could be remarkably damped and improved by the presence of the SFCL after the circuit breaker is opened to clear the fault. © 2007 British Crown Copyright.
Resumo:
Cheap to make and easy to shape, Magnesium Diboride (MgB2) throws the field of applied superconductivity wide open. Great efforts have been made to develop a super-conducting fault current limiter (SFCL) using MgB 2. With a superconducting transition temperature of 39 K, MgB 2 can be conveniently cooled with commercial cryocoolers. A cryogenic desktop test system, an ac pulse generation system and a real time data acquisition program in LabView/DAQmx were developed to investigate the quench behavior of MgB2 wires under pulse overcurrents at 25 K in self-field conditions. The experimental results on the current limitation behavior show the possibilities for using MgB2 for future SFCL applications. © 2007 IEEE.
Resumo:
A laboratory scale desktop test system including a cryogenic system, an AC pulse generation system and a real time data acquisition program in LabView/DAQmx, has been developed to evaluate the quench properties of MgB 2 wires as an element in a superconducting fault current limiter under pulse overcurrents at 25K in self-field conditions. The MgB2 samples started from a superconducting state and demonstrated good current limiting properties characterized by a fast transition to the normal state during the first half of the cycle and a continuously limiting effect in the subsequent cycles without burnouts. The experimental and numerical simulation results on the quench behaviour indicate the feasibility of using MgB 2 for future superconducting fault current limiter (SFCL) applications. © IOP Publishing Ltd.
Resumo:
Many manufacturing firms have developed a service dimension to their product portfolio. In response to this growing trend of servitisation, organisations, often involved in complex, long-lifecycle product-service system (PSS) provision, need to reconfigure their global engineering networks to support integrated PSS offerings. Drawing on parallel concepts in 'production' networks, the idea of 'location role' now becomes increasingly complex, in terms of service delivery. As new markets develop, locations in a specific region may need to grow/adapt engineering service 'competencies' along the value chain, from design and build to support and service, in order to serve future location-specific requirements and, potentially, those requirements of the overall network. The purpose of this paper is to advance understanding of how best to design complex multi-organisational engineering service networks, through extension of the 'production' network location role concept to a PSS context, capturing both traditional engineering 'design and build' and engineering 'service' requirements. Copyright © 2012 Inderscience Enterprises Ltd.
Resumo:
Bulk, polycrystalline MgB2 samples containing 2.5 wt.% multi-walled carbon nanotubes (CNTs) have been prepared by conventional solid state reaction at 800 °C. The effect of Mg precursor powders composed of two different particle sizes on the critical current density (Jc) of the as-sintered samples has been investigated. An enhancement of Jc at high field has been observed in MgB2 samples containing CNTs prepared with fine Mg powders, whereas the values of Jc in the sample prepared using the coarser Mg powders was slightly decreased. These results contrast significantly with measurements on pure, undoped, MgB2 samples prepared from the same Mg precursor powders. They suggest that carbon substitution into the MgB2 lattice, which accounts for increased flux pinning, and therefore Jc, is more effective in precursor Mg powders with a larger surface area. Rather surprisingly, the so-called fishtail effect, observed typically in MgB2 single crystals and in the (RE)BCO family of high temperature superconductors (HTSs), was observed in both sets of CNT-containing polycrystalline samples as a result of lattice defects associated with C substitution. Significantly, analytical fits to the data for each sample suggest that the same flux pinning mechanism accounts for the fishtail effect in polycrystalline MgB2 and (RE)BCO. © 2013 Elsevier B.V. All rights reserved.
Resumo:
The adoption of inclusive design principles and methods in the design practice is meant to support the equity of use of everyday products by as many people as possible independently of their age, physical, sensorial and cognitive capabilities. Although the intention is highly valuable, inclusive design approaches have not been widely applied in industrial context. This paper analyses the findings of an empirical research conducted with industrial designers and product managers. The research indicates some of the hindrances to the adoption of inclusive design, such as the current way the market is considered and targeted, and; the way the designers are driven by the project's brief and budget to orient their research strategy and activities. The paper proposes a way to improve the current industrial mode by strategically supplying clients, designers or both together with information about inclusivity. © 2013 Taylor & Francis Group.
Resumo:
In this letter, we use a novel 3-D model, earlier calibrated with experimental results on standard gate commutated thyristors (GCTs), with the aim to explain the physics behind the high-power technology (HPT) GCT, to investigate what impact this design would have on 24 mm diameter GCTs, and to clarify the mechanisms that limit safe switching at different dc-link voltages. The 3-D simulation results show that the HPT design can increase the maximum controllable current in 24 mm diameter devices beyond the realm of GCT switching, known as the hard-drive limit. It is proposed that the maximum controllable current becomes independent of the dc-link voltage for the complete range of operating voltage. © 1980-2012 IEEE.