987 resultados para 623
Resumo:
NiTi wires of 0.5 mm diameter were laser welded using a CW 100-W fiber laser in an argon shielding environment with or without postweld heat-treatment (PWHT). The microstructure and the phases present were studied by scanning-electron microscopy (SEM), transmission-electron microscopy (TEM), and X-ray diffractometry (XRD). The phase transformation behavior and the cyclic stress–strain behavior of the NiTi weldments were studied using differential scanning calorimetry (DSC) and cyclic tensile testing. TEM and XRD analyses reveal the presence of Ni4Ti3 particles after PWHT at or above 623 K (350 °C). In the cyclic tensile test, PWHT at 623 K (350 °C) improves the cyclic deformation behavior of the weldment by reducing the accumulated residual strain, whereas PWHT at 723 K (450 °C) provides no benefit to the cyclic deformation behavior. Welding also reduces the tensile strength and fracture elongation of NiTi wires, but the deterioration could be alleviated by PWHT.
Resumo:
In July 2010, the Shanghai Donghai Bridge wind farm, the first commercial offshore wind project was connected to the main grid in China. Three months later, four contracts were handed out to build a total of 1GW wind power capacity in the first round of an offshore concession project by the Chinese central government. At that time, there was a worldwide expectation that Chinese offshore wind power capacity would expand rapidly. However, China only achieved a total offshore wind power installed capacity of 389.2 MW by the end of 2012. This paper studies the recent development of offshore wind power in China by dividing the offshore wind power projects into three categories. This paper presents the difficulties for the Chinese government to achieve its 12th Five Year Plan for offshore wind power. Some policy recommendations to overcome the current difficulties are made in the conclusions.
Resumo:
A micro-grid is an autonomous system which can be operated and connected to an external system or isolated with the help of energy storage systems (ESSs). While the daily output of distributed generators (DGs) strongly depends on the temporal distribution of natural resources such as wind and solar, unregulated electric vehicle (EV) charging demand will deteriorate the imbalance between the daily load and generation curves. In this paper, a statistical model is presented to describe daily EV charging/discharging behaviour. An optimisation problem is proposed to obtain economic operation for the micro-grid based on this model. In day-ahead scheduling, with estimated information of power generation and load demand, optimal charging/discharging of EVs during 24 hours is obtained. A series of numerical optimization solutions in different scenarios is achieved by serial quadratic programming. The results show that optimal charging/discharging of EVs, a daily load curve can better track the generation curve and the network loss and required ESS capacity are both decreased. The paper also demonstrates cost benefits for EVs and operators.
Resumo:
While load flow conditions vary with different loads, the small-signal stability of the entire system is closely related with to the locations, capacities and models of loads. In this paper, load impacts with different capacities and models on the small-signal stability are analysed. In the real large-scale power system case, the load sensitivity which denotes the sensitivity of the eigenvalue with respect to the load active power is introduced and applied to rank the loads. The loads with high sensitivity are also considered.
Resumo:
Over-frequency generator tripping (OFGT) is used to cut off extra generation to balance power and loads in an isolated system. In this paper the impact of OGFT as a consequence of grid-connected wind farms and under-frequency load shedding (UFLS) is analysed. The paper uses a power system model to demonstrate that wind power fluctuations can readily render OFGT and UFLS maloperation. Using combined hydro and wind generation, the paper proposes a coordinated strategy which resolves problems associated with OFGT and UFLS and preserves system stability.
Resumo:
Increased complexity and interconnectivity of Supervisory Control and Data Acquisition (SCADA) systems in Smart Grids potentially means greater susceptibility to malicious attackers. SCADA systems with legacy communication infrastructure have inherent cyber-security vulnerabilities as these systems were originally designed with little consideration of cyber threats. In order to improve cyber-security of SCADA networks, this paper presents a rule-based Intrusion Detection System (IDS) using a Deep Packet Inspection (DPI) method, which includes signature-based and model-based approaches tailored for SCADA systems. The proposed signature-based rules can accurately detect several known suspicious or malicious attacks. In addition, model-based detection is proposed as a complementary method to detect unknown attacks. Finally, proposed intrusion detection approaches for SCADA networks are implemented and verified using a ruled based method.
Resumo:
OBJECTIVE: To examine the validity of a growth trajectory method to discriminate between pathologically and constitutionally undergrown fetuses using repeated measures of estimated fetal weight.
METHODS: In a prospective, observational, multicenter study in Ireland, 1,116 women with a growth-restricted fetus diagnosed participated with the objective of evaluating ultrasound findings as predictors of pediatric morbidity and mortality. Fetal growth trajectories were based on estimated fetal weight.
RESULTS: Between 22 weeks of gestation and term, two fetal growth trajectories were identified: normal (96.7%) and pathologic (3.3%). Compared with the normal trajectory, the pathologic trajectory was associated with an increased risk for preeclampsia (odds ratio [OR] 8.1, 95% confidence interval [CI] 2.6–23.4), increased umbilical artery resistance at 30 weeks of gestation (OR 12.6, 95% CI 4.6–34.1) or 34 weeks of gestation (OR 28.0, 95% CI 8.9–87.7), reduced middle cerebral artery resistance at 30 weeks of gestation (OR 0.33, 95% CI 0.12–0.96) or 34 weeks of gestation (OR 0.14, 95% CI 0.03–0.74), lower gestational age at delivery (mean 32.02 weeks of gestation compared with 38.02 weeks of gestation; P<.001), and higher perinatal complications (OR 21.5, 95% CI 10.5–44.2). In addition, 89.2% of newborns with pathologic fetal growth were admitted to neonatal intensive care units compared with 25.9% of those with normal growth.
CONCLUSIONS: Fetal growth trajectory analysis reliably differentiated fetuses with a pathologic growth pattern among a group of women with growth-restricted fetuses. With further development, this approach could provide clarity to how we define, identify, and ultimately manage pathologic fetal growth.
LEVEL OF EVIDENCE: II
Resumo:
The formidable barrier properties of the uppermost layer of the skin, the stratum corneum, impose significant limitations for successful systemic delivery of broad range of therapeutic molecules particularly macromolecules and genetic material. Microneedle (MN) has been proposed as a strategy to breach the stratum corneum barrier function in order to facilitate effective transport of molecules across the skin. This strategy involves use of micron sized needles fabricated of different materials and geometries to create transient aqueous conduits across the skin. MN, alone or with other enhancing strategies, has been demonstrated to dramatically enhance the skin permeability of numerous therapeutic molecules including biopharmaceuticals either in vitro, ex vivo or in vivo experiments. This suggested the promising use of MN technology for various possible clinical applications such as insulin delivery, transcutaneous immunisations and cutaneous gene delivery. MN has been proved as minimally invasive and painless in human subjects. This review article focuses on recent and future developments for MN technology including the latest type of MN design, challenges and strategies in MNs development as well as potential safety aspects based on comprehensive literature review pertaining to MN studies to date. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
Post-weld heat-treatment (PWHT) has been established as one of the cost-effective ways to improve the functional properties, namely shape memory and super-elastic effects (SME and SE), of laser-welded NiTi alloys. However, the functional performance of the laser-welded joint at different working temperatures has not been explored yet. The purpose of this study is to investigate the effect of different working temperatures on the functional properties of the laser-welded NiTi alloys before and after PWHT by applying cyclic deformation tests. Two laser-welded samples: as-welded and heat-treated sample (after PWHT at 350 oC or 623 K) were tested in this work at room temperature, 50 oC (or 323 K) and 75 oC (or 348 K) respectively. The samples were cyclically loaded and unloaded for 10 cycles up to 4 % strain. The critical stress to induce the martensitic transformation and the residual strain after the cyclic tests were recorded. The results indicate that the heat-treated sample exhibited better functional properties than the as-welded sample at room temperature and 50 oC (or 323 K). However, both the as-welded and heat-treated samples failed in the cyclic tests at 75 oC (or 348 K). These findings are important to determine the feasible working temperature range for the laser-welded NiTi components to exhibit desirable functional properties in engineering applications involving cyclic loading.
Resumo:
In May 2013, the Coalition Government introduced a Bill which if passed will streamline the tools available to tackle anti-social behaviour. One of their proposals is to replace the controversial anti-social behaviour order (ASBO) with what is termed an Injunction to Prevent Nuisance and Annoyance (IPNA). Although designed to tackle criminal and sub-criminal behaviour, this new intervention will be a purely civil order replacing the civil-criminal hybrid ASBO. This article explores some of the more troubling aspects of this part of the Bill including its expansive definition of anti-social behaviour, the avoidance of due process protections, the extensive restrictions that respondents may face and the likely impact of its use on young people. With legislation presently under Parliamentary scrutiny, this article calls for amendments to avoid the most problematic aspects of the ASBO being not just replicated but amplified.
Resumo:
The motivation for this study was to reduce physics workload relating to patient- specific quality assurance (QA). VMAT plan delivery accuracy was determined from analysis of pre- and on-treatment trajectory log files and phantom-based ionization chamber array measurements. The correlation in this combination of measurements for patient-specific QA was investigated. The relationship between delivery errors and plan complexity was investigated as a potential method to further reduce patient-specific QA workload. Thirty VMAT plans from three treatment sites - prostate only, prostate and pelvic node (PPN), and head and neck (H&N) - were retrospectively analyzed in this work. The 2D fluence delivery reconstructed from pretreatment and on-treatment trajectory log files was compared with the planned fluence using gamma analysis. Pretreatment dose delivery verification was also car- ried out using gamma analysis of ionization chamber array measurements compared with calculated doses. Pearson correlations were used to explore any relationship between trajectory log file (pretreatment and on-treatment) and ionization chamber array gamma results (pretreatment). Plan complexity was assessed using the MU/ arc and the modulation complexity score (MCS), with Pearson correlations used to examine any relationships between complexity metrics and plan delivery accu- racy. Trajectory log files were also used to further explore the accuracy of MLC and gantry positions. Pretreatment 1%/1 mm gamma passing rates for trajectory log file analysis were 99.1% (98.7%-99.2%), 99.3% (99.1%-99.5%), and 98.4% (97.3%-98.8%) (median (IQR)) for prostate, PPN, and H&N, respectively, and were significantly correlated to on-treatment trajectory log file gamma results (R = 0.989, p < 0.001). Pretreatment ionization chamber array (2%/2 mm) gamma results were also significantly correlated with on-treatment trajectory log file gamma results (R = 0.623, p < 0.001). Furthermore, all gamma results displayed a significant correlation with MCS (R > 0.57, p < 0.001), but not with MU/arc. Average MLC position and gantry angle errors were 0.001 ± 0.002 mm and 0.025° ± 0.008° over all treatment sites and were not found to affect delivery accuracy. However, vari- ability in MLC speed was found to be directly related to MLC position accuracy. The accuracy of VMAT plan delivery assessed using pretreatment trajectory log file fluence delivery and ionization chamber array measurements were strongly correlated with on-treatment trajectory log file fluence delivery. The strong corre- lation between trajectory log file and phantom-based gamma results demonstrates potential to reduce our current patient-specific QA. Additionally, insight into MLC and gantry position accuracy through trajectory log file analysis and the strong cor- relation between gamma analysis results and the MCS could also provide further methodologies to both optimize the VMAT planning and QA process.
Resumo:
“There is no mode of action, no form of emotion, that we do not share with the lower animals” (137). This evolutionary claim is not attributable to Darwin, but to Oscar Wilde, who allows Gilbert to voice this bold assertion in “The True Function of Criticism.” While critics have long wrestled with the ethical stance and coherence of Wilde's writings, they have overlooked a significant influence on his work: debates concerning the evolution of morality that animated the periodicals in which he was writing. Wilde was fascinated by the proposition that complex human behaviours, including moral and aesthetic responses, might be traced back to evolutionary impulses. Significantly, he also wrote for a readership already engaged with these controversies.
Resumo:
One of the core properties of Software Defined Networking (SDN) is the ability for third parties to develop network applications. This introduces increased potential for innovation in networking from performance-enhanced to energy-efficient designs. In SDN, the application connects with the network via the SDN controller. A specific concern relating to this communication channel is whether an application can be trusted or not. For example, what information about the network state is gathered by the application? Is this information necessary for the application to execute or is it gathered for malicious intent? In this paper we present an approach to secure the northbound interface by introducing a permissions system that ensures that controller operations are available to trusted applications only. Implementation of this permissions system with our Operation Checkpoint adds negligible overhead and illustrates successful defense against unauthorized control function access attempts.
Resumo:
The proposition of increased innovation in network applications and reduced cost for network operators has won over the networking world to the vision of Software-Defined Networking (SDN). With the excitement of holistic visibility across the network and the ability to program network devices, developers have rushed to present a range of new SDN-compliant hardware, software and services. However, amidst this frenzy of activity, one key element has only recently entered the debate: Network Security. In this article, security in SDN is surveyed presenting both the research community and industry advances in this area. The challenges to securing the network from the persistent attacker are discussed and the holistic approach to the security architecture that is required for SDN is described. Future research directions that will be key to providing network security in SDN are identified.