999 resultados para 61.205


Relevância:

20.00% 20.00%

Publicador:

Resumo:

u.a.: Eigenschaften der Kaufleute; Verhältnis zur Mutter Johanna Schopenhauer; Briefwechsel mit der Schwester Adele Schopenhauer; Reise Schopenhauers nach Frankreich; Schulden; H. Croulen; Heinrich Floris Schopenhauer;

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Persönliche Nachrichten, Ernst Emmerling, Leopold Sonnemann

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Trägerband: Q 16/109; Vorbesitzer: Philippus Jacobus Otto

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Frankfurter Latern, Devrient, Paris, Mathilde Heine, Anlage (nicht enthalten): Gedicht aus Heinrich Heines Nachlaß, "Brendelche Schnud", Dr. Heine, Dresden, Nizza

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vorbesitzer: Abraham Merzbacher (?)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Trägerband: Inc. qu. 873; Vorbesitzer: Dominikanerkloster Frankfurt am Main

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Die tatsächliche Blattzahl weicht von den Angaben des Kataloges ab.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Trägerbände: Ms. Barth. 13; Ms. Barth. 18; Ms. Barth. 29; Ms. Barth. 41; Vorbesitzer: Bartholomaeusstift Frankfurt am Main

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vorbesitzer: Michelangelo Gualandi

Relevância:

20.00% 20.00%

Publicador:

Resumo:

par F. Schneider

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A number of indoor environmental factors, including bioaerosol or aeroallergen concentrations have been identified as exacerbators for asthma and allergenic conditions of the respiratory system. People generally spend 90% to 95% of their time indoors. Therefore, understanding the environmental factors that affect the presence of aeroallergens indoors as well as outdoors is important in determining their health impact, and in identifying potential intervention methods. This study aimed to assess the relationship between indoor airborne fungal spore concentrations and indoor surface mold levels, indoor versus outdoor airborne fungal spore concentrations and the effect of previous as well as current water intrusion. Also, the association between airborne concentration of indoor fungal spores and surface mold levels and the age of the housing structure were examined. Further, the correlation between indoor concentrations of certain species was determined as well. ^ Air and surface fungal measurements and related information were obtained from a Houston-area data set compiled from visits to homes filing insurance claims. During the sampling visit these complaint homes exhibited either visible mold or a combination of visible mold and water intrusion problems. These data were examined to assess the relationships between the independent and dependent variables using simple linear regression analysis, and independent t-tests. To examine the correlation between indoor concentrations of certain species, Spearman correlation coefficients were used. ^ There were 126 houses sampled, with spring, n=43 (34.1%), and winter, n=42 (33.3%), representing the seasons with the most samples. The summer sample illustrated the highest geometric mean concentration of fungal spores, GM=5,816.5 relative to winter, fall and spring (GM=1,743.4, GM=3,683.5 and GM=2,507.4, respectively). In all seasons, greater concentrations of fungal spores were observed during the cloudy weather conditions. ^ The results indicated no statistically significant association between outdoor total airborne fungal spore concentration and total living room airborne fungal spore concentration (β = 0.095, p = 0.491). Second, living room surface mold levels were not associated with living room airborne fungal spore concentration, (β= 0.011, p = 0.669). Third, houses with and without previous water intrusion did not differ significantly with respect to either living room (t(111) = 0.710, p = 0.528) or bedroom (t(111) =1.673, p = 0.162) airborne fungal spore concentrations. Likewise houses with and without current water intrusion did not differ significantly with respect to living room (t(109)=0.716, p = 0.476) or bedroom (t(109) = 1.035, p = 0.304) airborne fungal spore concentration. Fourth, houses with and without current water intrusion did not differ significantly with respect to living room (χ 2 (5) = 5.61, p = 0.346), or bedroom (χ 2 (5) = 1.80, p = 0.875) surface mold levels. Fifth, the age of the house structure did not predict living room (β = 0.023, p = 0.102) and bedroom (β = 0.023, p = 0.065) surface mold levels nor living room (β = 0.002, p = 0.131) and bedroom (β = 0.001, p = 0.650) fungal spore airborne concentration. Sixth, in houses with visually observed mold growth there was statistically significant differences between the mean living room concentrations and mean outdoor concentrations for Cladosporium (t (107) = 11.73, p < 0.0001), Stachybotrys (t (106)=2.288, p = 0.024, and Nigrosporia (t (102) = 2.267, p = 0.025). Finally, there was a significant correlation between several living room fungal species pairs, namely, Cladosporium and Stachybotrys (r = 0.373, p <0.01, n=65), Curvularia and Aspergillus/Penicillium (r = 0.205, p < 0.05, n= 111)), Curvularia and Stachybotrys (r = 0.205, p < 0.05, n=111), Nigrospora and Chaetomium (r = 0.254, p < 0.01, n=105) and Stachybotrys and Nigrospora (r = 0.269, p < 0.01, n=105). ^ This study has demonstrated several positive findings, i.e., significant pairwise correlations of concentrations of several fungal species in living room air, and significant differences between indoor and outdoor concentrations of three fungal species in homes with visible mold. No association was observed between indoor and outdoor fungal spore concentrations. Neither living room nor bedroom airborne spore concentrations and surface mold levels were related to the age of the house or to water intrusion, either previous or current. Therefore, these findings suggest the need for evaluating additional parameters, as well as combinations of factors such as humidity, temperature, age of structure, ventilation, and room size to better understand the determinants of airborne fungal spore concentrations and surface mold levels in homes. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Second Edition. Pp.5-61 General Surgical Necessities, Gauze, Antiseptic Sundries, Surgical Sundries, Rubber Bandages, Catheters, Bougies, Splints, Tents, Emergency Bags, Surgeon's Needles, Operating Instruments, Amputating, Forceps, Aspiration, Cases, Catheters and Directors, Pocket Case Instruments, Dissecting and Post-Mortem Pp.62-118 General Operating - Osteotomy, Mastoid, Trephining, Eye Instruments, Aural, Nasal, Mouth and Throat, Tooth Forceps, Laryngoscopic Sets, Hydraulic Air Compressor, Variocele, Genito Urinary Pp. 119-167 Genito Urinary-Lithotrity, Alimentary, Anal and Rectal, Gynaecological, Pessaries, Microscopes, Syringes Pp.168-205 Chemical Apparatus and Glassware, Physician's Cabinets, Office Furniture, Operating Chairs and Tables, Hospital Beds, Cautery, Electrolytic, Batteries Pp.206-246 Cases, Varicose, Braces, Abdominal Supporters, Trusses, Invalid Chairs and Supplies, Sterilizers, Saddle-Bags, Deformity Apparatus Advertisements: Bandages, Abdominal Supporters, Rubber Supplies, Bags, Batteries, Cotton, Microscopes, Hypodermic Tablets, Atomizers, Furniture, Sterilizers, Syringes

Relevância:

20.00% 20.00%

Publicador:

Resumo:

p63, a p53 family member, is a transcription factor that has complex roles in cancer. This study focuses on the role of the ∆Np63α isoform in bladder cancer (BC). Epithelial – mesenchymal transition (EMT) is a physiological process that plays an important part in metastasis and drug resistance. At the molecular level, EMT is characterized by the loss of the epithelial marker E-cadherin, and the acquisition of the transcriptional repressors of E-cadherin (ZEB1, ZEB2, TWIST, SNAI1 and SNAI2). Recent publications highlight the role of microRNAs belonging to the miR-200 family and miR-205 in preventing EMT through suppression of ZEB1 and ZEB2. p53, the homologue of p63, is implicated in regulating EMT by modulating the expression of miR-200c; however, the mechanisms underlying miR-205 control remain unclear. Here we show that ∆Np63α regulates the transcription of miR-205 and controls EMT in human BC cells. We observed a strong correlation between the expression of ∆Np63α, miR-205 and E-cadherin in a panel of BC cell lines (n=28) and also in bladder primary tumors from a cohort of patients (n=98). A remarkably inverse correlation is observed between ∆Np63α and ZEB1/2 in cell lines. Stable knockdown (KD) ∆Np63α in UC6, an “epithelial” BC cell line, decreased the expression of miR-205 and induced ZEB1/2 expression, the effects that were reversed by expression of exogenous miR-205. Moreover, overexpressing ∆Np63α in UC3, a “messenchymal” BC cell line, brought about opposite results, an increase in miR-205 expression and a reduction in ZEB1/2 expression. Modulation of ∆Np63α expression resulted in a parallel change in the expression of miR-205 and miR-205 “host” gene (miR-205HG). Nuclear run-on and chromatin immunoprecipitation experiments demonstrated that ∆Np63α regulates the transcription of miR-205 through controlling the recruitment of RNA Polymerase II to the promoter of miR-205HG. Interestingly, high miR-205 expression correlated with poor clinical outcome in BC patients, consistent with our recent publication highlighting the enrichment of ∆Np63 in a lethal subset of muscle invasive BC. In summary, our data present the important roles of ∆Np63α in preventing EMT mediated by miR-205. Our study also identifies miR-205 as a potential molecular marker to predict clinical outcome in BC patients.