944 resultados para 3D object detection
Resumo:
Microfluidic technology has been successfully applied to isolate very rare tumor-derived epithelial cells (circulating tumor cells, CTCs) from blood with relatively high yield and purity, opening up exciting prospects for early detection of cancer. However, a major limitation of state-of-the-art CTC-chips is their inability to characterize the behavior and function of captured CTCs, for example to obtain information on proliferative and invasive properties or, ultimately, tumor re-initiating potential. Although CTCs can be efficiently immunostained with markers reporting phenotype or fate (e.g. apoptosis, proliferation), it has not yet been possible to reliably grow captured CTCs over long periods of time and at single cell level. It is challenging to remove CTCs from a microchip after capture, therefore such analyses should ideally be performed directly on-chip. To address this challenge, we merged CTC capture with three-dimensional (3D) tumor cell culture on the same microfluidic platform. PC3 prostate cancer cells were isolated from spiked blood on a transparent PDMS CTC-chip, encapsulated on-chip in a biomimetic hydrogel matrix (QGel™) that was formed in situ, and their clonal 3D spheroid growth potential was assessed by microscopy over one week in culture. The possibility to clonally expand a subset of captured CTCs in a near-physiological in vitro model adds an important element to the expanding CTC-chip toolbox that ultimately should improve prediction of treatment responses and disease progression.
Resumo:
The examination of traffic accidents is daily routine in forensic medicine. An important question in the analysis of the victims of traffic accidents, for example in collisions between motor vehicles and pedestrians or cyclists, is the situation of the impact. Apart from forensic medical examinations (external examination and autopsy), three-dimensional technologies and methods are gaining importance in forensic investigations. Besides the post-mortem multi-slice computed tomography (MSCT) and magnetic resonance imaging (MRI) for the documentation and analysis of internal findings, highly precise 3D surface scanning is employed for the documentation of the external body findings and of injury-inflicting instruments. The correlation of injuries of the body to the injury-inflicting object and the accident mechanism are of great importance. The applied methods include documentation of the external and internal body and the involved vehicles and inflicting tools as well as the analysis of the acquired data. The body surface and the accident vehicles with their damages were digitized by 3D surface scanning. For the internal findings of the body, post-mortem MSCT and MRI were used. The analysis included the processing of the obtained data to 3D models, determination of the driving direction of the vehicle, correlation of injuries to the vehicle damages, geometric determination of the impact situation and evaluation of further findings of the accident. In the following article, the benefits of the 3D documentation and computer-assisted, drawn-to-scale 3D comparisons of the relevant injuries with the damages to the vehicle in the analysis of the course of accidents, especially with regard to the impact situation, are shown on two examined cases.
Resumo:
OBJECT: The aim of our study was to demonstrate the image quality of the new device using human cadavers, extending the horizon of available imaging modalities in forensic medicine. MATERIALS AND METHODS: Six human cadavers were examined, revealing C-arm data sets of the head, neck thorax, abdomen and pelvis. High-resolution mode was performed with 500 fluoroscopy shots during a 190 degrees orbital movement with a constant tube voltage of 100 kV and a current of 4.6 mA. Based on these data sets subsequent three-dimensional reconstructions were generated. RESULTS: Reconstructed data sets revealed high-resolution images of all skeletal structures in a near-CT quality. The same image quality was available in all reconstruction planes. Artefacts caused by restorative dental materials are less accentuated in CBCT data sets. The system configuration was not powerful enough to generate sufficient images of intracranial structures. CONCLUSION: After the here-demonstrated encouraging preliminary results, the forensic indications that would be suitable for imaging with a 3D C-arm have to be defined. Promising seems the visualization local limited region of interest as the cervical spine or the facial skeleton.
Resumo:
The bridge inspection industry has yet to utilize a rapidly growing technology that shows promise to help improve the inspection process. This thesis investigates the abilities that 3D photogrammetry is capable of providing to the bridge inspector for a number of deterioration mechanisms. The technology can provide information about the surface condition of some bridge components, primarily focusing on the surface defects of a concrete bridge which include cracking, spalling and scaling. Testing was completed using a Canon EOS 7D camera which then processed photos using AgiSoft PhotoScan to align the photos and develop models. Further processing of the models was done using ArcMap in the ArcGIS 10 program to view the digital elevation models of the concrete surface. Several experiments were completed to determine the ability of the technique for the detection of the different defects. The cracks that were able to be resolved in this study were a 1/8 inch crack at a distance of two feet above the surface. 3D photogrammetry was able to be detect a depression of 1 inch wide with 3/16 inch depth which would be sufficient to measure any scaling or spalling that would be required be the inspector. The percentage scaled or spalled was also able to be calculated from the digital elevation models in ArcMap. Different camera factors including the distance from the defects, number of photos and angle, were also investigated to see how each factor affected the capabilities. 3D photogrammetry showed great promise in the detection of scaling or spalling of the concrete bridge surface.
Resumo:
This study compares MRI and MDCT for endoleak detection after endovascular repair of abdominal aortic aneurysms (EVAR). Forty-three patients with previous EVAR underwent both MRI (2D T1-FFE unenhanced and contrast-enhanced; 3D triphasic contrast-enhanced) and 16-slice MDCT (unenhanced and biphasic contrast-enhanced) within 1 week of each other for endoleak detection. MRI was performed by using a high-relaxivity contrast medium (gadobenate dimeglumine, MultiHance). Two blinded, independent observers evaluated MRI and MDCT separately. Consensus reading of MRI and MDCT studies was defined as reference standard. Sensitivity, specificity, and accuracy were calculated and Cohen's k statistics were used to estimate agreement between readers. Twenty endoleaks were detected in 18 patients at consensus reading (12 type II and 8 indeterminate endoleaks). Sensitivity, specificity, and accuracy for endoleak detection were 100%, 92%, and 96%, respectively, for reader 1 (95%, 81%, 87% for reader 2) for MRI and 55%, 100%, and 80% for reader 1 (60%, 100%, 82% for reader 2) for MDCT. Interobserver agreement was excellent for MDCT (k = 0.96) and good for MRI (k = 0.81). MRI with the use of a high-relaxivity contrast agent is significantly superior in the detection of endoleaks after EVAR compared with MDCT. MRI may therefore become the preferred technique for patient follow-up after EVAR.
Resumo:
The rapid growth of object-oriented development over the past twenty years has given rise to many object-oriented systems that are large, complex and hard to maintain. Object-Oriented Reengineering Patterns addresses the problem of understanding and reengineering such object-oriented legacy systems. This book collects and distills successful techniques in planning a reengineering project, reverse-engineering, problem detection, migration strategies and software redesign. The material in this book is presented as a set of "reengineering patterns" --- recurring solutions that experts apply while reengineering and maintaining object-oriented systems. The principles and techniques described in this book have been observed and validated in a number of industrial projects, and reflect best practice in object-oriented reengineering.
Resumo:
We consider the problem of approximating the 3D scan of a real object through an affine combination of examples. Common approaches depend either on the explicit estimation of point-to-point correspondences or on 2-dimensional projections of the target mesh; both present drawbacks. We follow an approach similar to [IF03] by representing the target via an implicit function, whose values at the vertices of the approximation are used to define a robust cost function. The problem is approached in two steps, by approximating first a coarse implicit representation of the whole target, and then finer, local ones; the local approximations are then merged together with a Poisson-based method. We report the results of applying our method on a subset of 3D scans from the Face Recognition Grand Challenge v.1.0.
Resumo:
Tracking user’s visual attention is a fundamental aspect in novel human-computer interaction paradigms found in Virtual Reality. For example, multimodal interfaces or dialogue-based communications with virtual and real agents greatly benefit from the analysis of the user’s visual attention as a vital source for deictic references or turn-taking signals. Current approaches to determine visual attention rely primarily on monocular eye trackers. Hence they are restricted to the interpretation of two-dimensional fixations relative to a defined area of projection. The study presented in this article compares precision, accuracy and application performance of two binocular eye tracking devices. Two algorithms are compared which derive depth information as required for visual attention-based 3D interfaces. This information is further applied to an improved VR selection task in which a binocular eye tracker and an adaptive neural network algorithm is used during the disambiguation of partly occluded objects.
Resumo:
This paper presents an empirical study of affine invariant feature detectors to perform matching on video sequences of people with non-rigid surface deformation. Recent advances in feature detection and wide baseline matching have focused on static scenes. Video frames of human movement capture highly non-rigid deformation such as loose hair, cloth creases, skin stretching and free flowing clothing. This study evaluates the performance of six widely used feature detectors for sparse temporal correspondence on single view and multiple view video sequences. Quantitative evaluation is performed of both the number of features detected and their temporal matching against and without ground truth correspondence. Recall-accuracy analysis of feature matching is reported for temporal correspondence on single view and multiple view sequences of people with variation in clothing and movement. This analysis identifies that existing feature detection and matching algorithms are unreliable for fast movement with common clothing.
Resumo:
Skin segmentation is a challenging task due to several influences such as unknown lighting conditions, skin colored background, and camera limitations. A lot of skin segmentation approaches were proposed in the past including adaptive (in the sense of updating the skin color online) and non-adaptive approaches. In this paper, we compare three skin segmentation approaches that are promising to work well for hand tracking, which is our main motivation for this work. Hand tracking can widely be used in VR/AR e.g. navigation and object manipulation. The first skin segmentation approach is a well-known non-adaptive approach. It is based on a simple, pre-computed skin color distribution. Methods two and three adaptively estimate the skin color in each frame utilizing clustering algorithms. The second approach uses a hierarchical clustering for a simultaneous image and color space segmentation, while the third approach is a pure color space clustering, but with a more sophisticated clustering approach. For evaluation, we compared the segmentation results of the approaches against a ground truth dataset. To obtain the ground truth dataset, we labeled about 500 images captured under various conditions.
Resumo:
The acquisition of conventional X-ray radiographs remains the standard imaging procedure for the diagnosis of hip-related problems. However, recent studies demonstrated the benefit of using three-dimensional (3D) surface models in the clinical routine. 3D surface models of the hip joint are useful for assessing the dynamic range of motion in order to identify possible pathologies such as femoroacetabular impingement. In this paper, we present an integrated system which consists of X-ray radiograph calibration and subsequent 2D/3D hip joint reconstruction for diagnosis and planning of hip-related problems. A mobile phantom with two different sizes of fiducials was developed for X-ray radiograph calibration, which can be robustly detected within the images. On the basis of the calibrated X-ray images, a 3D reconstruction method of the acetabulum was developed and applied together with existing techniques to reconstruct a 3D surface model of the hip joint. X-ray radiographs of dry cadaveric hip bones and one cadaveric specimen with soft tissue were used to prove the robustness of the developed fiducial detection algorithm. Computed tomography scans of the cadaveric bones were used to validate the accuracy of the integrated system. The fiducial detection sensitivity was in the same range for both sizes of fiducials. While the detection sensitivity was 97.96% for the large fiducials, it was 97.62% for the small fiducials. The acetabulum and the proximal femur were reconstructed with a mean surface distance error of 1.06 and 1.01 mm, respectively. The results for fiducial detection sensitivity and 3D surface reconstruction demonstrated the capability of the integrated system for 3D hip joint reconstruction from 2D calibrated X-ray radiographs.
Resumo:
BACKGROUND: Gray matter lesions are known to be common in multiple sclerosis (MS) and are suspected to play an important role in disease progression and clinical disability. A combination of magnetic resonance imaging (MRI) techniques, double-inversion recovery (DIR), and phase-sensitive inversion recovery (PSIR), has been used for detection and classification of cortical lesions. This study shows that high-resolution three-dimensional (3D) magnetization-prepared rapid acquisition with gradient echo (MPRAGE) improves the classification of cortical lesions by allowing more accurate anatomic localization of lesion morphology. METHODS: 11 patients with MS with previously identified cortical lesions were scanned using DIR, PSIR, and 3D MPRAGE. Lesions were identified on DIR and PSIR and classified as purely intracortical or mixed. MPRAGE images were then examined, and lesions were re-classified based on the new information. RESULTS: The high signal-to-noise ratio, fine anatomic detail, and clear gray-white matter tissue contrast seen in the MPRAGE images provided superior delineation of lesion borders and surrounding gray-white matter junction, improving classification accuracy. 119 lesions were identified as either intracortical or mixed on DIR/PSIR. In 89 cases, MPRAGE confirmed the classification by DIR/PSIR. In 30 cases, MPRAGE overturned the original classification. CONCLUSION: Improved classification of cortical lesions was realized by inclusion of high-spatial resolution 3D MPRAGE. This sequence provides unique detail on lesion morphology that is necessary for accurate classification.
Resumo:
Visual working memory (VWM) involves maintaining and processing visual information, often for the purpose of making immediate decisions. Neuroimaging experiments of VWM provide evidence in support of a neural system mainly involving a fronto-parietal neuronal network, but the role of specific brain areas is less clear. A proposal that has recently generated considerable debate suggests that a dissociation of object and location VWM occurs within the prefrontal cortex, in dorsal and ventral regions, respectively. However, re-examination of the relevant literature presents a more robust distribution suggestive of a general caudal-rostral dissociation from occipital and parietal structures, caudally, to prefrontal regions, rostrally, corresponding to location and object memory, respectively. The purpose of the present study was to identify a dissociation of location and object VWM across two imaging methods (magnetoencephalography, MEG, and functional magnetic imaging, fMRI). These two techniques provide complimentary results due the high temporal resolution of MEG and the high spatial resolution of fMRI. The use of identical location and object change detection tasks was employed across techniques and reported for the first time. Moreover, this study is the first to use matched stimulus displays across location and object VWM conditions. The results from these two imaging methods provided convergent evidence of a location and object VWM dissociation favoring a general caudal-rostral rather than the more common prefrontal dorsal-ventral view. Moreover, neural activity across techniques was correlated with behavioral performance for the first time and provided convergent results. This novel approach of combining imaging tools to study memory resulted in robust evidence suggesting a novel interpretation of location and object memory. Accordingly, this study presents a novel context within which to explore the neural substrates of WM across imaging techniques and populations.
Resumo:
While cancer is one of the greatest challenges to public health care, prostate cancer was chosen as cancer model to develop a more accurate imaging assessment than those currently available. Indeed, an efficient imaging technique which considerably improves the sensitivity and specificity of the diagnostic and predicting the cancer behavior would be extremely valuable. The concept of optoacoustic imaging using home-made functionalized gold nanoparticles coupled to an antibody targeting PSMA (prostate specific membrane antigen) was evaluated on different cancer cell lines to demonstrate the specificity of the designed platform. Two commonly used microscopy techniques (indirect fluorescence and scanning electron microscopy) showed their straightforwardness and versatility for the nanoparticle binding investigations regardless the composition of the investigated nanoobjects. Moreover most of the research laboratories and centers are equipped with fluorescence microscopes, so indirect fluorescence using Quantum dots can be used for any active targeting nanocarriers (polymers, ceramics, metals, etc.). The second technique based on backscattered electron is not only limited to gold nanoparticles but also suits for any study of metallic nanoparticles as the electronic density difference between the nanoparticles and binding surface stays high enough. Optoacoustic imaging was finally performed on a 3D cellular model to assess and prove the concept of the developed platform.
Resumo:
In early pregnancy, abortion can be induced by blocking the actions of progesterone receptors (PR). However, the PR antagonist, mifepristone (RU38486), is rather unselective in clinical use because it also cross-reacts with other nuclear receptors. Since the ligand-binding domain of human progesterone receptor (hPR) and androgen receptor (hAR) share 54% identity, we hypothesized that derivatives of dihydrotestosterone (DHT), the cognate ligand for hAR, might also regulate the hPR. Compounds designed and synthesized in our laboratory were investigated for their affinities for hPRB, hAR, glucocorticoid receptor (hGRα) and mineralocorticoid receptor (hMR), using whole cell receptor competitive binding assays. Agonistic and antagonistic activities were characterized by reporter assays. Nuclear translocation was monitored using cherry-hPRB and GFP-hAR chimeric receptors. Cytostatic properties and apoptosis were tested on breast cancer cells (MCF7, T-47D). One compound presented a favorable profile with an apparent neutral hPRB antagonistic function, a selective cherry-hPRB nuclear translocation and a cytostatic effect. 3D models of human PR and AR with this ligand were constructed to investigate the molecular basis of selectivity. Our data suggest that these novel DHT-derivatives provide suitable templates for the development of new selective steroidal hPR antagonists.