986 resultados para 3D accuracy
Resumo:
Objectives The relationship between performance variability and accuracy in cricket fast bowlers of different skill levels under three different task conditions was investigated. Bowlers of different skill levels were examined to observe if they could adapt movement patterns to maintain performance accuracy on a bowling skills test. Design 8 national, 12 emerging and 12 junior pace bowlers completed an adapted version of the Cricket Australia bowling skills test, in which they performed 30 trials involving short (n = 10), good (n = 10), and full (n = 10) length deliveries. Methods Bowling accuracy was recorded by digitising ball position relative to the centre of a target. Performance measures were mean radial error (accuracy), variable error (consistency), centroid error (bias), bowling score and ball speed. Radial error changes across the duration of the skills test were used to record accuracy adjustment in subsequent deliveries. Results Elite fast bowlers performed better in speed, accuracy, and test scores than developing athletes. Bowlers who were less variable were also more accurate across all delivery lengths. National and emerging bowlers were able to adapt subsequent performance trials within the same bowling session for short length deliveries. Conclusions Accuracy and adaptive variability were key components of elite performance in fast bowling which improved with skill level. In this study, only national elite bowlers showed requisite levels of adaptive variability to bowl a range of lengths to different pitch locations.
Resumo:
One of the primary desired capabilities of any future air traffic separation management system is the ability to provide early conflict detection and resolution effectively and efficiently. In this paper, we consider the risk of conflict as a primary measurement to be used for early conflict detection. This paper focuses on developing a novel approach to assess the impact of different measurement uncertainty models on the estimated risk of conflict. The measurement uncertainty model can be used to represent different sensor accuracy and sensor choices. Our study demonstrates the value of modelling measurement uncertainty in the conflict risk estimation problem and presents techniques providing a means of assessing sensor requirements to achieve desired conflict detection performance.
Resumo:
This paper is concerned with the optimal path planning and initialization interval of one or two UAVs in presence of a constant wind. The method compares previous literature results on synchronization of UAVs along convex curves, path planning and sampling in 2D and extends it to 3D. This method can be applied to observe gas/particle emissions inside a control volume during sampling loops. The flight pattern is composed of two phases: a start-up interval and a sampling interval which is represented by a semi-circular path. The methods were tested in four complex model test cases in 2D and 3D as well as one simulated real world scenario in 2D and one in 3D.
Resumo:
This paper looks at the accuracy of using the built-in camera of smart phones and free software as an economical way to quantify and analyse light exposure by producing luminance maps from High Dynamic Range (HDR) images. HDR images were captured with an Apple iPhone 4S to capture a wide variation of luminance within an indoor and outdoor scene. The HDR images were then processed using Photosphere software (Ward, 2010.) to produce luminance maps, where individual pixel values were compared with calibrated luminance meter readings. This comparison has shown an average luminance error of ~8% between the HDR image pixel values and luminance meter readings, when the range of luminances in the image is limited to approximately 1,500cd/m2.
Resumo:
A fundamental proposition is that the accuracy of the designer's tender price forecasts is positively correlated with the amount of information available for that project. The paper describes an empirical study of the effects of the quantity of information available on practicing Quantity Surveyors' forecasting accuracy. The methodology involved the surveyors repeatedly revising tender price forecasts on receipt of chunks of project information. Each of twelve surveyors undertook two projects and selected information chunks from a total of sixteen information types. The analysis indicated marked differences in accuracy between different project types and experts/non-experts. The expert surveyors' forecasts were not found to be significantly improved by information other than that of basic building type and size, even after eliminating project type effects. The expert surveyors' forecasts based on the knowledge of building type and size alone were, however, found to be of similar accuracy to that of average practitioners pricing full bills of quantities.
Resumo:
Emerging sciences, such as conceptual cost estimating, seem to have to go through two phases. The first phase involves reducing the field of study down to its basic ingredients - from systems development to technological development (techniques) to theoretical development. The second phase operates in the direction in building up techniques from theories, and systems from techniques. Cost estimating is clearly and distinctly still in the first phase. A great deal of effort has been put into the development of both manual and computer based cost estimating systems during this first phase and, to a lesser extent, the development of a range of techniques that can be used (see, for instance, Ashworth & Skitmore, 1986). Theoretical developments have not, as yet, been forthcoming. All theories need the support of some observational data and cost estimating is not likely to be an exception. These data do not need to be complete in order to build theories. As it is possible to construct an image of a prehistoric animal such as the brontosaurus from only a few key bones and relics, so a theory of cost estimating may possibly be found on a few factual details. The eternal argument of empiricists and deductionists is that, as theories need factual support, so do we need theories in order to know what facts to collect. In cost estimating, the basic facts of interest concern accuracy, the cost of achieving this accuracy, and the trade off between the two. When cost estimating theories do begin to emerge, it is highly likely that these relationships will be central features. This paper presents some of the facts we have been able to acquire regarding one part of this relationship - accuracy, and its influencing factors. Although some of these factors, such as the amount of information used in preparing the estimate, will have cost consequences, we have not yet reached the stage of quantifying these costs. Indeed, as will be seen, many of the factors do not involve any substantial cost considerations. The absence of any theory is reflected in the arbitrary manner in which the factors are presented. Rather, the emphasis here is on the consideration of purely empirical data concerning estimating accuracy. The essence of good empirical research is to .minimize the role of the researcher in interpreting the results of the study. Whilst space does not allow a full treatment of the material in this manner, the principle has been adopted as closely as possible to present results in an uncleaned and unbiased way. In most cases the evidence speaks for itself. The first part of the paper reviews most of the empirical evidence that we have located to date. Knowledge of any work done, but omitted here would be most welcome. The second part of the paper presents an analysis of some recently acquired data pertaining to this growing subject.
Resumo:
Several methods of estimating the costs or price of construction projects are now available for use in the construction industry. It is difficult due to the conservative approach of estimators and quantity surveyors, and the fact that the industry is undergoing one of its deepest recessions this century, to implement any changes in these processes. Several methods have been tried and tested and probably discarded forever, whereas other methods are still in their infancy. There is also a movement towards greater use of the computer, whichever method seems to be adopted. An important consideration with any method of estimating is the accuracy by which costs can be calculated. Any improvement in this consideration will be welcomed by a11 parties, because existing methods are poor when measured by this criteria. Estimating, particularly by contractors, has always carried some mystic, and many of the processes discussed both in the classroom and in practice are little more than fallacy when properly investigated. What makes an estimator or quantity surveyor good at forecasting the right price? To what extent does human behaviour influence or have a part to play? These and some of the other aspects of effective estimating are now examined in more detail.
Resumo:
We present a rigorous validation of the analytical Amadei solution for the stress concentration around an arbitrarily orientated borehole in general anisotropic elastic media. First, we revisit the theoretical framework of the Amadei solution and present analytical insights that show that the solution does indeed contain all special cases of symmetry, contrary to previous understanding, provided that the reduced strain coefficients b11 and b55 are not equal. It is shown from theoretical considerations and published experimental data that the b11 and b55 are not equal for realistic rocks. Second, we develop a 3D finite element elastic model within a hybrid analytical–numerical workflow that circumvents the need to rebuild and remesh the model for every borehole and material orientation. Third, we show that the borehole stresses computed from the numerical model and the analytical solution match almost perfectly for different borehole orientations (vertical, deviated and horizontal) and for several cases involving isotropic, transverse isotropic and orthorhombic symmetries. It is concluded that the analytical Amadei solution is valid with no restriction on the borehole orientation or the symmetry of the elastic anisotropy.
Resumo:
The building sector is the dominant consumer of energy and therefore a major contributor to anthropomorphic climate change. The rapid generation of photorealistic, 3D environment models with incorporated surface temperature data has the potential to improve thermographic monitoring of building energy efficiency. In pursuit of this goal, we propose a system which combines a range sensor with a thermal-infrared camera. Our proposed system can generate dense 3D models of environments with both appearance and temperature information, and is the first such system to be developed using a low-cost RGB-D camera. The proposed pipeline processes depth maps successively, forming an ongoing pose estimate of the depth camera and optimizing a voxel occupancy map. Voxels are assigned 4 channels representing estimates of their true RGB and thermal-infrared intensity values. Poses corresponding to each RGB and thermal-infrared image are estimated through a combination of timestamp-based interpolation and a pre-determined knowledge of the extrinsic calibration of the system. Raycasting is then used to color the voxels to represent both visual appearance using RGB, and an estimate of the surface temperature. The output of the system is a dense 3D model which can simultaneously represent both RGB and thermal-infrared data using one of two alternative representation schemes. Experimental results demonstrate that the system is capable of accurately mapping difficult environments, even in complete darkness.
Resumo:
Video presented as part of AMCIS 2010 conference in Lima Peru. New improved collaborative BPMN editor video, showing a new interface and collaboration capabilities via remote login of another avatar.
Resumo:
Video presented as part of ACIS 2009 conference in Melbourne Australia. This video outlines a collaborative BPMN editing system, developed by Stephen West, an IT Research Masters student at QUT, Brisbane, Australia. The editor uses a number of tools to facilitate collaborative process modelling, including a presentation wall, to view text descriptions of business processes, and a tile-based BPMN editor. We will post a video soon focussing on the multi-user capabilities of this editor. For more details see www.bpmve.org.
Resumo:
Video presented as part of ACIS 2009 conference in Melbourne Australia. This movie is a demonstration of the use of 3D Virtual Environments to visualise 3D BPMN Process Models, and in particular, to highlight any issues with the process model that are spatial in nature. This work is part of a paper accepted for the Asia-Pacific Conference on Conceptual Modelling (APCCM 2010) to be held in Brisbane - http://2010.apccm.org/
Resumo:
In this study x-ray CT has been used to produce a 3D image of an irradiated PAGAT gel sample, with noise-reduction achieved using the ‘zero-scan’ method. The gel was repeatedly CT scanned and a linear fit to the varying Hounsfield unit of each pixel in the 3D volume was evaluated across the repeated scans, allowing a zero-scan extrapolation of the image to be obtained. To minimise heating of the CT scanner’s x-ray tube, this study used a large slice thickness (1 cm), to provide image slices across the irradiated region of the gel, and a relatively small number of CT scans (63), to extrapolate the zero-scan image. The resulting set of transverse images shows reduced noise compared to images from the initial CT scan of the gel, without being degraded by the additional radiation dose delivered to the gel during the repeated scanning. The full, 3D image of the gel has a low spatial resolution in the longitudinal direction, due to the selected scan parameters. Nonetheless, important features of the dose distribution are apparent in the 3D x-ray CT scan of the gel. The results of this study demonstrate that the zero-scan extrapolation method can be applied to the reconstruction of multiple x-ray CT slices, to provide useful 2D and 3D images of irradiated dosimetry gels.
Resumo:
Robust hashing is an emerging field that can be used to hash certain data types in applications unsuitable for traditional cryptographic hashing methods. Traditional hashing functions have been used extensively for data/message integrity, data/message authentication, efficient file identification and password verification. These applications are possible because the hashing process is compressive, allowing for efficient comparisons in the hash domain but non-invertible meaning hashes can be used without revealing the original data. These techniques were developed with deterministic (non-changing) inputs such as files and passwords. For such data types a 1-bit or one character change can be significant, as a result the hashing process is sensitive to any change in the input. Unfortunately, there are certain applications where input data are not perfectly deterministic and minor changes cannot be avoided. Digital images and biometric features are two types of data where such changes exist but do not alter the meaning or appearance of the input. For such data types cryptographic hash functions cannot be usefully applied. In light of this, robust hashing has been developed as an alternative to cryptographic hashing and is designed to be robust to minor changes in the input. Although similar in name, robust hashing is fundamentally different from cryptographic hashing. Current robust hashing techniques are not based on cryptographic methods, but instead on pattern recognition techniques. Modern robust hashing algorithms consist of feature extraction followed by a randomization stage that introduces non-invertibility and compression, followed by quantization and binary encoding to produce a binary hash output. In order to preserve robustness of the extracted features, most randomization methods are linear and this is detrimental to the security aspects required of hash functions. Furthermore, the quantization and encoding stages used to binarize real-valued features requires the learning of appropriate quantization thresholds. How these thresholds are learnt has an important effect on hashing accuracy and the mere presence of such thresholds are a source of information leakage that can reduce hashing security. This dissertation outlines a systematic investigation of the quantization and encoding stages of robust hash functions. While existing literature has focused on the importance of quantization scheme, this research is the first to emphasise the importance of the quantizer training on both hashing accuracy and hashing security. The quantizer training process is presented in a statistical framework which allows a theoretical analysis of the effects of quantizer training on hashing performance. This is experimentally verified using a number of baseline robust image hashing algorithms over a large database of real world images. This dissertation also proposes a new randomization method for robust image hashing based on Higher Order Spectra (HOS) and Radon projections. The method is non-linear and this is an essential requirement for non-invertibility. The method is also designed to produce features more suited for quantization and encoding. The system can operate without the need for quantizer training, is more easily encoded and displays improved hashing performance when compared to existing robust image hashing algorithms. The dissertation also shows how the HOS method can be adapted to work with biometric features obtained from 2D and 3D face images.