992 resultados para 346.077
Resumo:
Diffusion controlled growth of the phases in Hf-Si and Zr-Si systems are studied by bulk diffusion couple technique. Only two phases grow in the interdiffusion zone, although several phases are present in both the systems. The location of the Kirkendall marker plane, detected based on the grain morphology, indicates that disilicides grow by the diffusion of Si. Diffusion of the metal species in these phases is negligible. This indicates that vacancies are present mainly on the Si sublattice. The activation energies for integrated diffusion coefficients in the HfSi2 and ZrSi2 are estimated as 394 +/- 37 and 346 +/- 34 kJ mol(-1), respectively. The same is calculated for the HfSi phase as 485 +/- 42 kJ mol(-1). The activation energies for Si tracer diffusion in the HfSi2 and ZrSi2 phases are estimated as 430 +/- 36 and 348 +/- 34 kJ mol(-1), respectively. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
Background: Haemophilus influenzae (H. Influenzae) is the causative agent of pneumonia, bacteraemia and meningitis. The organism is responsible for large number of deaths in both developed and developing countries. Even-though the first bacterial genome to be sequenced was that of H. Influenzae, there is no exclusive database dedicated for H. Influenzae. This prompted us to develop the Haemophilus influenzae Genome Database (HIGDB). Methods: All data of HIGDB are stored and managed in MySQL database. The HIGDB is hosted on Solaris server and developed using PERL modules. Ajax and JavaScript are used for the interface development. Results: The HIGDB contains detailed information on 42,741 proteins, 18,077 genes including 10 whole genome sequences and also 284 three dimensional structures of proteins of H. influenzae. In addition, the database provides ``Motif search'' and ``GBrowse''. The HIGDB is freely accessible through the URL:http://bioserverl.physicslisc.ernetin/HIGDB/. Discussion: The HIGDB will be a single point access for bacteriological, clinical, genomic and proteomic information of H. influenzae. The database can also be used to identify DNA motifs within H. influenzae genomes and to compare gene or protein sequences of a particular strain with other strains of H. influenzae. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Systematic monitoring of subsurface hydrogeochemistry has been carried out for a period of one year in a humid tropical region along the Nethravati-Gurupur River. The major ion and stable isotope (delta O-18 and delta H-2) compositions are used to understand the hydrogeochemistry of groundwater and its interaction with surface water. In the study, it is observed that intense weathering of source rocks is the major source of chemical elements to the surface and subsurface waters. In addition, agricultural activities and atmospheric contributions also control the major ion chemistry of water in the study area. There is a clear seasonality in the groundwater chemistry, which is related to the recharge and discharge of the hydrological system. On a temporal scale, there is a decrease in major cation concentrations during the monsoon which is a result of dilution of sources from the weathering of rock minerals, and an increase in anion concentrations which is contributed by the atmosphere, accompanied by an increase in water level during the monsoon. The stable isotope composition indicates that groundwater in the basin is of meteoric origin and recharged directly from the local precipitation during the monsoonal season. Soon after the monsoon, groundwater and surface water mix in the subsurface region. The groundwater feeds the surface water during the lean river flow season.
Resumo:
In the titled tricyclic orthocarbonate derivative, the three endocyclic C-O bonds are longer than the exo-cyclic C-O bond (similar to 4.40 angstrom vs. similar to 1.37 angstrom). This indicates an anomeric-type interaction between the two electron lone pairs on the exocyclic oxygen atom and the antibonding orbitals of the two antiperiplanar endocyclic C-O bonds. The remaining endocyclic C-O bond - marginally shorter than the other two apparently adds to this effect. Intriguingly, the antibonding orbital of the exocyclic C-O bond extends into the interior of the adamantyl cage, and is stereoelectronically prevented from overlapping with any of the six adjacent lone pairs. The results also seem to indicate a preference for interaction between a single donor oxygen atom and multiple acceptor antibonding orbitals rather than vice versa. The results add insightfully to the substantial body of evidence favouring the antiperiplanar lone pair hypothesis (ALPH). (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Controlling the band gap by tuning the lattice structure through pressure engineering is a relatively new route for tailoring the optoelectronic properties of two-dimensional (2D) materials. Here, we investigate the electronic structure and lattice vibrational dynamics of the distorted monolayer 1T-MoS2 (1T') and the monolayer 2H-MoS2 via a diamond anvil cell (DAC) and density functional theory (DFT) calculations. The direct optical band gap of the monolayer 2H-MoS2 increases by 11.7% from 1.85 to 2.08 eV, which is the highest reported for a 2D transition metal dichalcogenide (TMD) material. DFT calculations reveal a subsequent decrease in the band gap with eventual metallization of the monolayer 2H-MoS2, an overall complex structureproperty relation due to the rich band structure of MoS2. Remarkably, the metastable 1T'-MoS2 metallic state remains invariant with pressure, with the J(2), A(1g), and E(2)g modes becoming dominant at high pressures. This substantial reversible tunability of the electronic and vibrational properties of the MoS2 family can be extended to other 2D TMDs. These results present an important advance toward controlling the band structure and optoelectronic properties of monolayer MoS2 via pressure, which has vital implications for enhanced device applications.
Resumo:
A tri-layer metamaterial absorber, composed of a metal structure/dielectric spacer/vanadium dioxide (VO2) ground plane, is shown to switch reversibly between reflective and absorptive states as a function of temperature. The VO2 film, which changes its conductivity by four orders of magnitude across a insulator-metal transition at about 68 degrees C, enables the switching by forming a resonant absorptive structure at high temperatures while being inactive at low temperatures. The fabricated metamaterial shows a modulation of the reflectivity levels of 58% at a frequency of 22.5 THz and 57% at a frequency of 34.5 THz. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Long-term (2009-2012) data from ground-based measurements of aerosol black carbon (BC) from a semi-urban site, Pantnagar (29.0 degrees N, 79.5 degrees E, 231 m amsl), in the Indo-Gangetic Plain (IGP) near the Himalayan foothills are analyzed to study the regional characterization. Large variations are seen in BC at both diurnal and seasonal scales, associated with the mesoscale and synoptic meteorological processes, and local/regional anthropogenic activities. BC diurnal variations show two peaks (morning and evening) arising from the combined effects of the atmospheric boundary layer (ABL) dynamics and local emissions. The diurnal amplitudes as well as the rates of diurnal evolution are the highest in winter season, followed by autumn, and the lowest in summer-monsoon. BC exhibits nearly an inverse relation with mixing layer depth in all seasons; being strongest in winter (R-2 = 0.89) and weakest (R-2 = 0.33) in monsoon (July-August). Unlike BC, co-located aerosol optical depths (AOD) and aerosol absorption are highest in spring over IGP, probably due to the presence of higher abundances of aerosols (including dust) above the ABL (in the free troposphere). AOD (500 nm) showed annual peak (>0.6) in May-June, dominated by coarse mode, while fine mode aerosols dominated in late autumn and early winter. Aerosols profiles from CALIPSO show highest values close to the surface in winter/autumn, similar to the feature seen in surface BC, whereas at altitudes > 2 km, the extinction is maximum in spring/summer. WRF-Chem model is used to simulate BC temporal variations and then compared with observed BC. The model captures most of the important features of the diurnal and seasonal variations but significantly underestimated the observed BC levels, suggesting improvements in diurnal and seasonal varying BC emissions apart from the boundary layer processes. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, we study the exact controllability of a second order linear evolution equation in a domain with highly oscillating boundary with homogeneous Neumann boundary condition on the oscillating part of boundary. Our aim is to obtain the exact controllability for the homogenized equation. The limit problem with Neumann condition on the oscillating boundary is different and hence we need to study the exact controllability of this new type of problem. In the process of homogenization, we also study the asymptotic analysis of evolution equation in two setups, namely solution by standard weak formulation and solution by transposition method.
Resumo:
The hot deformation behavior of Nb-1 wt.%Zr alloy was studied using uniaxial compression tests carried out in vacuum to a true strain of 0.6 in the temperature range of 900 to 1700 degrees C and the strain rate range of 3 x 10(-3) to 10 s(-1). The optimum regime of hot workability of Nb-1Zr alloy was determined from the strain rate sensitivity (m) contour plots. A high m of about 02 was obtained in the temperature and strain rate range of 1200-1500 degrees C and 10(-3) to 10(-1) s(-1) and 1600-1700 degrees C and 10(-1) to 1 s(-1). Microstructure of the deformed samples showed features of dynamic recrystallization within the high strain rate sensitivity domain. Compared to the study on Nb-1Zr-0.1C alloy, Nb-1Zr showed a lower flow stress and an optimum hot working domain at lower temperatures. In the 1500 to 1700 degrees C range the apparent activation energy of deformation for Nb-1Zr was 259 kJ mol(-1), the stress exponent 5, and the activation volume about 200 to 700 b(3). (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
Se llevó a cabo un estudio durante el período lluvioso del año 2005, ‘Rancho Agropecológico’ “EBENEZER” Comarca ‘Hoja Chigüe’ Niquinohomo, Masaya, Nicaragua. El objetivo fue determinar la producción de materia seca y composición química de la biomasa a diferentes frecuencias de corte en Avispa (Hibiscus rosa - sinensis) . Se utilizó un diseño de bloques completos al azar (BCA) con tres repeticiones. Las frecuencias de corte fueron; 30, 45 y 60 días de rebrote. Las variables de estudio fueron longitud de rebrotes (cm), rendimiento de materia seca (kg de MS/ha/corte), porcentajes de materia seca, proteína cruda, fibra cruda, calcio y fósforo. Se realizaron análisis de varianza (ANDEVA) y separaciones de medias, usando Duncan (P<0.05). Las variables codificadas en porcentajes se transformaron, según, dos veces por el arco seno de la raíz cuadrada de la proporción, con el fin de ajustar los datos porcentuales a una distribución normal, Los resultados indican diferencias significativ as entre tratamientos para las variables; longitud de rebrote ( 29.90 y 1 3 .57 cm para frecuencias de 60 y 30 días); rendimiento de materia seca (1, 279.2 y 346.0 kg/ha/corte, para las mismas frecuencias). Se encontraron diferencias significativas para la materia seca (2 6.03, 15.15% para 60 y 30 días), proteína cruda (18.62 y, 23.16% para las mismas frecuencias), y fibra cruda (20.16 VS 15.67 % para 60 y 30 días). En cuanto a minerales, se encontró diferencias estadísticas para el fósforo no así, para el caso del calcio. El estudio permitió demostrar diferencias marcadas en la producción y composición química del forraje de Avispa (Hibiscus rosa-sinensis), observándose que, a diferencias de otros forrajes, los parámetros de calidad no presentan una disminución drástica a medida que se aumenta la edad de rebrote, con las frecuencias estudiadas.
Resumo:
It becomes increasingly difficult to make continuous metal lines with well defined thickness and edges by the lift-off technique as the line width is decreased. We describe in this paper a technique in which the combination of high resolution electron beam lithography and ionized cluster beam (ICB) deposition has enabled very high quality gold lines ({all equal to}25nm wide) to be obtained on thick single crystal silicon substrates. © 1990.