956 resultados para 300302 Plant Growth and Development
Resumo:
Aluminum (Al) toxicity is one of the most limiting factors for productivity. This research was carried out to assess the influence of Al nutrient solution on plant height, dry weight and morphoanatomical alterations in corn (Zea mays L.) roots and leaves. The experiment was conducted in a greenhouse with five treatments consisting of Al doses (0, 25, 75, 150, and 300 µmol L-1) and six replications. The solutions were constantly aerated, and the pH was initially adjusted to 4.3. The shoot dry matter, root dry matter and plant height decreased significantly with increasing Al concentrations. Compared to the control plants, it was observed that the root growth of corn plants in Al solutions was inhibited, there were fewer lateral roots and the development of the root system reduced. The leaf anatomy of plants grown in solutions containing 75 and 300 µmol L-1 Al differed in few aspects from the control plants. The leaf sheaths of the plants exposed to Al had a uniseriate epidermis coated with a thin cuticle layer, and the cells of both the epidermis and the cortex were less developed. In the vascular bundle, the metaxylem and protoxylem had no secondary walls, and the diameter of both was much smaller than of the control plants.
Resumo:
Maize is among the most important crops in the world. This plant species can be colonized by diazotrophic bacteria able to convert atmospheric N into ammonium under natural conditions. This study aimed to investigate the effect of inoculation of the diazotrophic bacterium Herbaspirillum seropedicae (ZAE94) and isolate new strains of plant growth-promoting bacteria in maize grown in Vitória da Conquista, Bahia, Brazil. The study was conducted in a greenhouse at the Experimental Area of the Universidade Estadual do Sudoeste da Bahia. Inoculation was performed with peat substrate, with and without inoculation containing strain ZAE94 of H. seropedicae and four rates of N, in the form of ammonium sulfate (0, 60, 100, and 140 kg ha-1 N). After 45 days, plant height, dry matter accumulation in shoots, percentage of N, and total N (NTotal) were evaluated. The bacteria were isolated from root and shoot fragments of the absolute control; the technique of the most probable number and identification of bacteria were used. The new isolates were physiologically characterized for production of indole acetic acid (IAA) and nitrogenase activity. We obtained 30 isolates from maize plants. Inoculation with strain ZAE94 promoted an increase of 14.3 % in shoot dry mass and of 44.3 % in NTotal when associated with the rate 60 kg ha-1 N. The strains N11 and N13 performed best with regard to IAA production and J06, J08, J10, and N15 stood out in acetylene reduction activity, demonstrating potential for inoculation of maize.
Resumo:
Selostus: Typpilannoituksen ja kasvunsääteiden vaikutukset kevätviljojen ja rypsin satoon sekä typen käyttöön
Resumo:
ABSTRACT The network of actin cytoskeleton is composed of actin filaments (F-actin) that are made by polymerisation of actin monomers and actin binding proteins. It is required for growth and morphogenesis of eukaryotic cells. The labelling of F-actin with constitutively expressed GFP-Talin (Kost et al., 1998) reveals the organisation of cellular actin networks in plants. Due to the lack of information on actin cytoskeleton through gametophytic development of the model moss plant Physcornitrella patens, stable transgenic lines overexpressing GFP-Talin were generated to detect F-actin structures. It is shown that the 35S promoter driven expression is not suitable for F-actin labelling in all cells. When it is replaced by the inducible heat-shock promoter Gmhsp17.3 from soybean, one hour mild heat stress at 37°C followed by recovery at 25°C is enough to induce efficient and transient labelling in all tissues without altering cellular morphology. The optimal observations of F-actin structures at different stages of moss development can be done between 12-18 hours after the induction. By using confocal microscopy, we demonstrate that stellated actin arrays were densely accumulated at the growing tip in regenerating protoplasts, apical protonemal cells and rhizoids and connected with a fine dispersed F-actin mesh. Following three-dimensional growth, the cortical star-like structures are widespread in the meristematic cells of developing bud and young gametophores. On the contrary, undulating networks of actin cables are found at the final stage of cell differentiation. During redifferentiation of mature leaf cells into protonemal filaments the rather stagnant web of actin cables is replaced by diffuse actin meshwork. In eukaryotes, nucleation of the actin monomers prior to their polymerization is driven by the seven-subunit ARP2/3 complex and formins. We cloned the gene encoding the ARP3 subunit of P. patens and generated arp3 mutants of the moss through gene disruption. The knockout of ARP3 affects the elongation of chloronemal cells and blocks further differentiation of caulonemal cells and rhizoids, and the gametophores are slightly stunted compared to wild-type. The arp mutants were created in the heat-shock inducible GFP-Talin strains allowing us to visualise a disorganised actin network and a lack of star-like actin cytoskeleton arrays. We conclude that ARP2/3 dependent nucleation of actin filaments is critical for the growth of filamentous cells, which in turn influences moss colonization. In complementation assays, the overexpression of Physcomitrella and Arab idopsis ARP3 genes in the moss arp3 mutant results in full recovery of wild type phenotype. In contrast the ARP3 subunit of fission yeast is not able to complement the moss arp3 mutant of moss indicating that regulation of the ARP2/3 dependent actin nucleation diverged in different kingdoms. RESUME Le réseau d'actine est composé de filaments de F-actine et d'un ensemble de protéines s'y attachant (Actin binding proteins). Le réseau d'actine est nécessaire à la croissance et à la morphogenèse de toutes les cellules eucaryotes. Chez les plantes, le marquage ainsi que l'étude de l'organisation du réseau d'actine ont été réalisés en utilisant une fusion GFP-Talin (Kost et al., 1998) exprimée sous le control d'un promoteur constitutif. Afin d'étudier les structures F-actine dans les cellules de Physcomitrella Patens et pour combler le manque d'information sur le développement des gamétophores, des lignées transgéniques stables surexprimant GFP-Talin ont été crées. Nous avons démontré que l'utilisation du promoteur 35S est inadéquate pour le marquage complet et homogène des filaments d'actine dans toutes les cellules de P. patens. Par contre, l'utilisation du promoteur inductible Gmhsp17.3 nous a permis de réaliser un marquage transitoire et général dans tous les tissus de la mousse. Une heure de choc thermique à 37°C suivis d'un temps de récupération de 12-18h à 25°C sont les conditions optimales (sans dommages cellulaires) pour l'observation des structures F-actine à différentes étapes de développement de la mousse. En utilisant la microscopie confocale, nous avons observé l'existence de structures F-actine accumulées en forme d'étoiles. Ces structures, qui sont liées au réseau de microfilaments d'actine, ont été observées dans les protoplastes en régénération, les cellules des protonema apicales ainsi que dans les rhizoïdes. En suivant la croissance tridimensionnelle, ces structures en étoiles ont été observées dans les cellules meristématiques des bourgeons et des jeunes gamétophores. Par contre, dans les cellules différentiées ces structures laissent place à des réseaux de câbles épais. Nous avons également remarqué que durant la redifferentiation des cellules foliaires le réseau de câbles de F-actine est remplacé par un réseau de F-actine diffus. Dans les cellules eucaryotes, la nucléation des filaments d'actirie précédant leur polymérisation est contrôlé par sept sous unités du complexe ARP2/3 et par des formines. Nous avons isolé le gène codant pour la sous unité ARP3 de P. patens et nous avons crée des mutants arp3 par intégration ciblée (Knockout). L'élongation des cellules chloronema est clairement affectée dans les mutants arp3. La différentiation des caulonemata et des rhizoïdes est bloquée et les gametophores sont légèrement plus courts comparé au type sauvage. A fin d'étudier l'organisation des filaments d'actines dans les mutants arp3, nous avons aussi réalisé un arp3-knockout dans la lignée Hsp-GFP-Talin. La nouvelle lignée générée nous a permis de visualiser une désorganisation du réseau d'actine et une absence complète de structures de F-actine accumulée en forme d'étoiles. Les résultats obtenus nous amènent à conclure que la nucléation (ARP2/3 dépendante) des filaments d'actine est indispensable à la croissance des cellules filamenteuses. Par conséquent, les filaments d'actine semblent avoir un rôle dans la colonisation des milieux par les mousses. Nous avons également procédé à des essais de complémentation du mutant arp3. La surexpression des gènes ARP3 de Physcomitrella et d'Arabidopsis dans les cellules du mutant arp3 rétabli complètement le phénotype WT. Par contre, le gène ARP3 des levures n'est pas suffisant pour complémenter la même mutation dans les cellules de mousses. Ce résultat démontre que les mécanismes de régulation de la nucléation des filaments d'actine (ARP2/3 dépendante) sont différents entre les différents groupes d'eucaryotes.
Resumo:
Spore germination in Rhizopogon abietis, R. luteolus, R. roseolus and R. villosulus was induced in the presence of Rhodotorula glutinis and activated charcoal, in agar medium (N6:5). In one R. roseolus sample, 51% of spores germinated within 35 days, allowing observation of the course of spore germination and the different developmental patterns of homokaryotic mycelia. In these plates, spores showed two times of germination. The spores that germinated early produced an apical germ tube. Later other spores germinated in proximity to young mycelium, by forming a germ vesicle. One of the hyphal growth patterns obtained (interruption-swelling-ramification) is similar to that reported for other fungi. With this technique for inducing spore germination, it is possible to obtain enough monosporic cultures to perform mating tests. Key words: Basidiomycotina, Hypogeous, Monosporic Cultures.
Resumo:
Selostus: Kylvötiheyden ja kasvunsääteiden vaikutus kevätrukiin satoon
Resumo:
The remarkable plasticity of plant ontogeny is shaped by hormone pathways, which not only orchestrate intrinsic developmental programs, but also convey environmental inputs. Several classes of plant hormones exist, and among them auxin, brassinosteroid and gibberellin are central for the regulation of growth in general and of cell elongation in particular. Various growth phenomena can be modulated by each of the three hormones, in a sometimes synergistic fashion, suggesting physiological redundancy and/or crosstalk between the different pathways. Whether this means that they target a common and unique transcriptome module, or rather separate growth-promoting transcriptome modules, remains unclear, however. Nevertheless, while surprisingly few molecular mediators of direct crosstalk in the proper sense have been isolated, evidence is accumulating for complex cross-regulatory relations between hormone pathways at the level of transcription, as exemplified in root meristem growth. The growing number of available genome sequences from the green lineage offers first glimpses at the evolution of hormone pathways, which can aid in understanding the multiple relationships observed between these pathways in angiosperms. The available analyses suggest that auxin, gibberellin and brassinosteroid signalling arose during land plant evolution in this order, correlating with increased morphological complexity and possibly conferring increased developmental flexibility.
Resumo:
The aim of this work was to evaluate whether terrestrial model ecosystems (TMEs) are a useful tool for the study of the effects of litter quality, soil invertebrates and mineral fertilizer on litter decomposition and plant growth under controlled conditions in the tropics. Forty-eight intact soil cores (17.5-cm diameter, 30-cm length) were taken out from an abandoned rubber plantation on Ferralsol soil (Latossolo Amarelo) in Central Amazonia, Brazil, and kept at 28ºC in the laboratory during four months. Leaf litter of either Hevea pauciflora (rubber tree), Flemingia macrophylla (a shrubby legume) or Brachiaria decumbens (a pasture grass) was put on top of each TME. Five specimens of either Pontoscolex corethrurus or Eisenia fetida (earthworms), Porcellionides pruinosus or Circoniscus ornatus (woodlice), and Trigoniulus corallinus (millipedes) were then added to the TMEs. Leaf litter type significantly affected litter consumption, soil microbial biomass and nitrate concentration in the leachate of all TMEs, but had no measurable effect on the shoot biomass of rice seedlings planted in top soil taken from the TMEs. Feeding rates measured with bait lamina were significantly higher in TMEs with the earthworm P. corethrurus and the woodlouse C. ornatus. TMEs are an appropriate tool to assess trophic interactions in tropical soil ecossistems under controlled laboratory conditions.
Resumo:
OBJECTIVE: To investigate the effects of neonatal hypoglycemia on physical growth and neurocognitive function.Study design: A systematic detection of hypoglycemia (<2.6 mmol/L or 47 mg/dL) was carried out in 85 small-for-gestational-age preterm neonates. Prospective serial evaluations of physical growth and psychomotor development were performed. Retrospectively, infants were grouped according to their glycemic status. RESULTS: The incidence of hypoglycemia was 72.9%. Infants with repeated episodes of hypoglycemia had significantly reduced head circumferences and lower scores in specific psychometric tests at 3.5 years of age. Hypoglycemia also caused reduced head circumferences at 18 months and lower psychometric scores at 5 years of age. Infants with moderate recurrent hypoglycemia had lower scores at 3.5 and 5 years of age compared with the group of infants who had 1 single severe hypoglycemic episode. CONCLUSION: Recurrent episodes of hypoglycemia were strongly correlated with persistent neurodevelopmental and physical growth deficits until 5 years of age. Recurrent hypoglycemia also was a more predictable factor for long-term effects than the severity of a single hypoglycemic episode. Therefore repetitive blood glucose monitoring and rapid treatment even for mild hypoglycemia are recommended for small-for-gestational-age infants in the neonatal period.
Resumo:
The lack of good quality planting material has limited the expansion and contributed to yield reduction of the Brazilian pineapple culture. Alternatives of 'Pérola' pineapple slips management were studied aiming at obtaining superior planting material within a shorter time period and making good use of healthy slips of low vigor, that are commonly discarded by growers. Two experiments were carried out at the Experimental Field of Embrapa Cassava & Fruits, Cruz das Almas, Bahia, Brazil, and another one in a commercial plantation in the region of Itaberaba, BA, using blocks or entirely randomized designs with at least four replications. In the first one, the development of slips of different initial sizes (6 to 20 cm long), when grown on mother plants after fruit harvest, was compared with that of slips grown in a nursery after their removal from the mother plants. It became clear that larger slips grow more vigorously and that the removal from the mother plant delays their growth. However, results from the second study showed that those slips grown in nursery had vegetative and agronomic performance similar to that of conventional slips and close to that of plantlets produced from plant stem sections. Independently from the type of planting material used, the larger ones presented a more vigorous growth and produced higher yields. In the third study, it was observed the influence of mineral fertilization, pest control and growth regulator application after fruit harvest on slip development. The treatments applied did not significantly accelerate slip growth. Slips reached 50 cm length and at least 300 g fresh weight within 90 days after fruit harvest, indicating that vigorous plants have enough nutritional storage material for slips development.
Resumo:
Plants are photoautotrophic sessile organisms that use environmental cues to optimize multiple facets of growth and development. A classic example is phototropism - in shoots this is typically positive, leading to growth towards the light, while roots frequently show negative phototropism triggering growth away from the light. Shoot phototropism optimizes light capture of leaves in low light environments and hence increases photosynthetic productivity. Phototropins are plasma-membrane-associated UV-A/blue-light activated kinases that trigger phototropic growth. Light perception liberates their protein kinase domain from the inhibitory action of the amino-terminal photosensory portion of the photoreceptor. Following a series of still poorly understood events, phototropin activation leads to the formation of a gradient of the growth hormone auxin across the photo-stimulated stem. The greater auxin concentration on the shaded compared with the lit side of the stem enables growth reorientation towards the light. In this Minireview, we briefly summarize the signaling steps starting from photoreceptor activation until the establishment of a lateral auxin gradient, ultimately leading to phototropic growth in shoots.
Resumo:
We provide robust and compelling evidence of the marked impact of tertiary education on the economic growth of less developed countries and of its the relatively smaller impact on the growth of developed ones. Our results argue in favor of the accumulation of high skill levels especially in technologically under-developed countries and, contrary to common wisdom, independently of the fact that these economies might initially produce lower-technology goods or perform technology imitation. Our results are robust to the different measures used in proxying human capital and to the adjustments made for cross-country differences in the quality of education. Country-specific institutional quality, as well as other indicators including legal origin, religious fractionalization and openness to trade have been used to control for the robustness of the results. These factors are also shown to speed up technology convergence thereby confirming previous empirical studies. Our estimates tackle problems of endogeneity by adopting a variety of techniques, including instrumental variables -for both panel and cross-section analyses- and the two-step efficient dynamics system GMM.
Resumo:
Compelling evidence indicates the participation of polyamines in abiotic and biotic stress responses in plants. Indeed, genetic engineering of polyamine levels in plants has successfully improved biotic and abiotic stress resistance in model plants and crops. We anticipate that many of the current challenges in agriculture to cope with climate change and maintain nutritional quality of fruits and vegetables can be approached by considering the polyamine pathway...