911 resultados para 2nd Intracellular Loop
Resumo:
Bordetella bronchiseptica causes acute and chronic respiratory infections in diverse animal species and occasionally in humans. In this study, we described the establishment of a simple, sensitive and cost-efficient loop-mediated isothermal amplification (LAMP) assay for the detection of B. bronchiseptica. A set of primers towards a 235 bp region within the flagellum gene of B. bronchiseptica was designed with online software.. The specificity of the LAMP assay was examined by using 6 porcine pathogens and 100 nasal swabs collected from healthy pigs and suspect infected pigs. The results indicated that positive reactions were confirmed for all B. bronchiseptica and no cross-reactivity was observed from other non-B. bronchiseptica. In sensitivity evaluations, the technique successfully detected a serial dilutions of extracted B. bronchiseptica DNA with a detection limit of 9 copies, which was 10 times more sensitive than that of PCR. Compared with conventional PCR, the higher sensitivity of LAMP method and no need for the complex instrumentation make this LAMP assay a promising alternative for the diagnosis of B. bronchiseptica in rural areas and developing countries where there lacks of complex laboratory services.
Resumo:
This review considers the importance of compartmentation in the regulation of carbohydrate metabolism in leaves. We draw particular attention to the role of the vacuole as a site for storage of soluble sugars based on sucrose, and discuss briefly their characteristic metabolism. We also point out inconsistencies between the observed properties of vacuoles and the behaviour in vitro of the enzymes of fructan biosynthesis that do not support the hypothesis that the vacuole is the site of synthesis as well as of storage. We also consider compartmentation of carbohydrate metabolism between different cell types, using mainly our studies on leaves of temperate C3 gramineae. Here we present evidence of significant differences in carbon metabolism between epidermis, mesophyll, bundle sheath and vasculature based upon both single-cell sampling and immunolocalisation. The implications of these differences for the control of metabolism in leaves are discussed.
Resumo:
Cellular immune responses are a critical part of the host's defense against intracellular bacterial infections. Immunity to Brucella abortus crucially depends on antigen-specific T cell-mediated activation of macrophages, which are the major effectors of cell-mediated killing of this organism. T lymphocytes that proliferate in response to B. abortus were characterized for phenotype and cytokine activity. Human, murine, and bovine T lymphocytes exhibited a type 1 cytokine profile, suggesting an analogous immune response in these different hosts. In vivo protection afforded by a particular cell type is dependent on the antigen presented and the mechanism of antigen presentation. Studies using MHC class I and class II knockout mice infected with B. abortus have demonstrated that protective immunity to brucellosis is especially dependent on CD8+ T cells. To target MHC class I presentation we transfected ex vivo a murine macrophage cell line with B. abortus genes and adoptively transferred them to BALB/c mice. These transgenic macrophage clones induced partial protection in mice against experimental brucellosis. Knowing the cells required for protection, vaccines can be designed to activate the protective T cell subset. Lastly, as a new strategy for priming a specific class I-restricted T cell response in vivo, we used genetic immunization by particle bombardment-mediated gene transfer
Resumo:
Toxoplasma gondii and Trypanosoma cruzi are intracellular parasites which, as part of their life cycle, induce a potent cell-mediated immunity (CMI) maintained by Th1 lymphocytes and IFN-g. In both cases, induction of a strong CMI is thought to protect the host against rapid parasite multiplication and consequent pathology and lethality during the acute phase of infection. However, the parasitic infection is not eliminated by the immune system and the vertebrate host serves as a parasite reservoir. In contrast, Leishmania sp, which is a slow growing parasite, appears to evade induction of CMI during early stages of infection as a strategy for surviving in a hostile environment (i.e., inside the macrophages which are their obligatory niche in the vertebrate host). Recent reports show that the initiation of IL-12 synthesis by macrophages during these parasitic infections is a key event in regulating CMI and disease outcome. The studies reviewed here indicate that activation/inhibition of distinct signaling pathways and certain macrophage functions by intracellular protozoa are important events in inducing/modulating the immune response of their vertebrate hosts, allowing parasite and host survival and therefore maintaining parasite life cycles.
Resumo:
Reactive arthritis (ReA) is an inflammatory joint disease triggered by certain bacterial infections e.g. gastroenteritis caused by Salmonella. ReA is strongly associated to HLA-B27. However, the mechanism behind this association is unknown but it is suggested that the bacteria or bacterial compartments persist in the body. In this study, it was investigated whether the intracellular signaling is altered in HLA-B27- transfected U937 monocytic macrophages. Moreover, the contribution of HLA–B27 heavy chain (HC) misfolding was of interest. The study revealed that p38 activity plays a crucial role in controlling intracellular Salmonella Enteritidis in U937 cells. The replication of intracellular bacteria was dependent on p38 kinase and the activity of p38 was dysregulated in HLA-B27- transfected cells expressing misfolding heavy chains (HCs). Also the double-stranded RNA -dependent kinase (PKR) that modifies p38 signaling was overexpressed and hypophosphorylated upon infection and lipopolysaccharide stimulation. The expression of CCAAT enhancer binding protein beta (C/EBPβ) was found to be increased after infection and stimulation. Increased amount of full length human antigen R (HuR), disturbed HuR cleavage and reduced dependence on PKR after infection were observed. All the findings were linked to HLA-B27 HCs containing misfoldingassociated glutamic acid 45 (Glu45) at the peptide binding groove. The results indicate that the expression of HLA-B27 modulates the intracellular environment of U937 monocytic macrophages by altering signaling. This phenomenon is at least partially associated to the HLA-B27 misfolding. These observations offer a novel explanation how HLA-B27 may modulate inflammatory response induced by ReA-triggering bacteria.
Resumo:
Cells possess multiple intracellular Ca2+-releasing systems. Sea urchin egg homogenates are a well-established model to study intracellular Ca2+ release. In the present study the mechanism of interaction between three intracellular Ca2+ pools, namely the nicotinic acid adenine dinucleotide phosphate (NAADP), the cyclic ADP-ribose (cADPR) and the inositol 1',4',5'-trisphosphate (IP3)-regulated Ca2+ stores, is explored. The data indicate that the NAADP Ca2+ pool could be used to sensitize the cADPR system. In contrast, the IP3 pool was not affected by the Ca2+ released by NAADP. The mechanism of potentiation of the cADPR-induced Ca2+ release, promoted by Ca2+ released from the NAADP pool, is mediated by the mechanism of Ca2+-induced Ca2+ release. These data raise the possibility that the NAADP Ca2+ store may have a role as a regulator of the cellular sensitivity to cADPR.
Resumo:
Toxoplasma gondii, Leishmania amazonensis and Trypanosoma cruzi are obligate intracellular parasites that multiply until lysis of host cells. The present study was undertaken to evaluate the effect of hydroxyurea (an inhibitor of cell division at the G1/S phase) on the multiplication of L. amazonensis, T. gondii, and T. cruzi in infected host cells. Infected cells were treated with hydroxyurea (4 mM) for 48 h. Hydroxyurea arrested intracellular multiplication of all infective forms of the parasites tested. In treated cultures, the percent of infected host cells decreased (50-97%) and most intracellular parasites were eliminated. Ultrastructural observations showed no morphologic change in host cells while intracellular parasites presented drastic morphologic alterations or disruption. The results strongly suggest that hydroxyurea was able to interfere with the multiplication of intracellular parasites, leading to an irreversible morphological effect on L. amazonensis, T. gondii, and T. cruzi without affecting the host cells.
Resumo:
Using a short-term bulk culture protocol designed for an intracellular-staining method based on a flow cytometry approach to the frequencies of cytokine-producing cells from tuberculosis and leprosy patients, we found distinct patterns of T cell subset expression. The method also reveals the profile of peak cytokine production and can provide simultaneous information about the phenotype of cytokine-producing cells, providing a reliable assay for monitoring the immunity of these patients. The immune response of Mycobacterium leprae and purified protein derivative (PPD) in vitro to a panel of mycobacteria-infected patients from an endemic area was assessed in primary mononuclear cell cultures. The kinetics and source of the cytokine pattern were measured at the single-cell level. IFN-gamma-, TNF-alpha-, IL-4- and IL-10-secreting T cells were intracytoplasmic evaluated in an attempt to identify M. leprae- and PPD-specific cells directly from the peripheral blood. The analysis by this approach indicated that TNF-alpha was the first (8 h) to be produced, followed by IFN-gamma (16 h), IL-10 (20 h) and IL-4 (24 h), and double-staining experiments confirmed that CD4+ were a greater source of TNF-alpha than of CD8+ T cells (P < 0.05). Both T cell subsets secreted similar amounts of IFN-gamma. We conclude that the protocol permits rapid evaluation of cytokine production by different T cell populations. The method can also be used to define immune status in non-infected and contact individuals.
Resumo:
Evidence based on immunological cross-reactivity and anti-diabetic properties has suggested the presence of insulin-like peptides in plants. The objective of the present study was to investigate the presence of insulin-like proteins in the leaves of Bauhinia variegata ("pata-de-vaca", "mororó"), a plant widely utilized in popular medicine as an anti-diabetic agent. We show that an insulin-like protein was present in the leaves of this plant. A chloroplast protein with a molecular mass similar to that of bovine insulin was extracted from 2-mm thick 15% SDS-PAGE gels and fractionated with a 2 x 24 cm Sephadex G-50 column. The activity of this insulin-like protein (0.48 mg/mL) on serum glucose levels of four-week-old Swiss albino (CF1) diabetic mice was similar to that of commercial swine insulin used as control. Further characterization of this molecule by reverse-phase hydrophobic HPLC chromatographic analysis as well as its antidiabetic activity on alloxan-induced mice showed that it has insulin-like properties. Immunolocalization of the insulin-like protein in the leaves of B. variegata was performed by transmission electron microscopy using a polyclonal anti-insulin human antibody. Localization in the leaf blades revealed that the insulin-like protein is present mainly in chloroplasts where it is also found associated with crystals which may be calcium oxalate. The presence of an insulin-like protein in chloroplasts may indicate its involvement in carbohydrate metabolism. This finding has strengthened our previous results and suggests that insulin-signaling pathways have been conserved through evolution.
Resumo:
We recently demonstrated that the substitution of the autolysis loop (residues 143 to 154 in the chymotrypsin numbering system) of activated protein C (APC) with the corresponding loop of factor Xa (fXa) renders the APC mutant (APC/fX143-154) susceptible to inhibition by antithrombin (AT) in the presence of pentasaccharide. Our recent results further indicated, that in addition to an improvement in the reactivity of APC/fX143-154 with AT, both the amidolytic and anti-factor Va activities of the mutant APC have also been significantly increased. Since the autolysis loop of APC is five residues longer than the autolysis loop of fXa, it could not be ascertained whether this loop in the mutant APC specifically interacts with the activated conformation of AT or if a shorter autolysis loop is responsible for a global improvement in the catalytic activity of the mutant protease. To answer this question, we prepared another APC mutant in which the autolysis loop of the protease was replaced with the corresponding loop of trypsin (APC/Tryp143-154). Unlike an ~500-fold improvement in the reactivity of APC/fX143-154 with AT in the presence of pentasaccharide, the reactivity of APC/Tryp143-154 with the serpin was improved ~10-fold. These results suggest that both the length and structure of residues of the autolysis loop are critical for the specificity of the coagulation protease interaction with AT. Further factor Va inactivation studies with the APC mutants revealed a similar role for the autolysis loop of APC in the interaction with its natural substrate.
Resumo:
Nitric oxide (NO) is a molecular messenger involved in several events of synaptic plasticity in the central nervous system. Ca2+ influx through the N-methyl-D-aspartate receptor (NMDAR) triggers the synthesis of NO by activating the enzyme neuronal nitric oxide synthase (nNOS) in postsynaptic densities. Therefore, NMDAR and nNOS are part of the intricate scenario of postsynaptic densities. In the present study, we hypothesized that the intracellular distribution of nNOS in the neurons of superior colliculus (SC) superficial layers is an NMDAR activity-dependent process. We used osmotic minipumps to promote chronic blockade of the receptors with the pharmacological agent MK-801 in the SC of 7 adult rats. The effective blockade of NMDAR was assessed by changes in the protein level of the immediate early gene NGFI-A, which is a well-known NMDAR activity-dependent expressing transcription factor. Upon chronic infusion of MK-801, a decrease of 47% in the number of cells expressing NGFI-A was observed in the SC of treated animals. Additionally, the filled dendritic extent by the histochemical product of nicotinamide adenine di-nucleotide phosphate diaphorase was reduced by 45% when compared to the contralateral SC of the same animals and by 64% when compared to the SC of control animals. We conclude that the proper intracellular localization of nNOS in the retinorecipient layers of SC depends on NMDAR activation. These results are consistent with the view that the participation of NO in the physiological and plastic events of the central nervous system might be closely related to an NMDAR activity-dependent function.