958 resultados para 290301 Robotics and Mechatronics
Resumo:
Since 2000 and the commercialisation of the Da Vinci robotic system, indications for robotic surgery are rapidly increasing. Recent publications proved superior functional outcomes with equal oncologic safety in comparison to conventional open surgery. Its field of application may extend to the nasopharynx and skull base surgery. The preliminary results are encouraging. This article reviews the current literature on the role of transoral robotic surgery in head and neck cancer.
Resumo:
In this paper, we present the experimental results and evaluation of the SmartBox stimulation device in P2P e-learning system which is based on JXTA-Overlay. We also show the design and implementation of the SmartBox environment that is used for stimulating the learners motivation to increase the learning efficiency. The SmartBox is integrated with our P2P system as a useful tool for monitoring and controlling learners¿ activity. We found by experimental results that the SmartBox is an effective way to increase the learner¿s concentration. We also investigated the relation between learner¿s body movement, concentration, and amount of study. From the experimental results, we conclude that the use of SmartBox is an effective way to stimulate the learners in order to continue studying while maintaining the concentration.
Resumo:
This paper presents a relational positioning methodology for flexibly and intuitively specifying offline programmed robot tasks, as well as for assisting the execution of teleoperated tasks demanding precise movements.In relational positioning, the movements of an object can be restricted totally or partially by specifying its allowed positions in terms of a set of geometric constraints. These allowed positions are found by means of a 3D sequential geometric constraint solver called PMF – Positioning Mobile with respect to Fixed. PMF exploits the fact that in a set of geometric constraints, the rotational component can often be separated from the translational one and solved independently.
Resumo:
This paper presents a programming environment for supporting learning in STEM, particularly mobile robotic learning. It was designed to maintain progressive learning for people with and without previous knowledge of programming and/or robotics. The environment was multi platform and built with open source tools. Perception, mobility, communication, navigation and collaborative behaviour functionalities can be programmed for different mobile robots. A learner is able to programme robots using different programming languages and editor interfaces: graphic programming interface (basic level), XML-based meta language (intermediate level) or ANSI C language (advanced level). The environment supports programme translation transparently into different languages for learners or explicitly on learners’ demand. Learners can access proposed challenges and learning interfaces by examples. The environment was designed to allow characteristics such as extensibility, adaptive interfaces, persistence and low software/hardware coupling. Functionality tests were performed to prove programming environment specifications. UV BOT mobile robots were used in these tests
Resumo:
Main goal of this thesis was to implement a localization system which uses sonars and WLAN intensity maps to localize an indoor mobile robot. A probabilistic localization method, Monte Carlo Localization is used in localization. Also the theory behind probabilistic localization is explained. Two main problems in mobile robotics, path tracking and global localization, are solved in this thesis. Implemented system can achieve acceptable performance in path tracking. Global localization using WLAN received signal strength information is shown to provide good results, which can be used to localize the robot accurately, but also some bad results, which are no use when trying to localize the robot to the correct place. Main goal of solving ambiguity in office like environment is achieved in many test cases.
Resumo:
Tässä työssä raportoidaan harjoitustyön kehittäminen ja toteuttaminen Aktiivisen- ja robottinäön kurssille. Harjoitustyössä suunnitellaan ja toteutetaan järjestelmä joka liikuttaa kappaleita robottikäsivarrella kolmiuloitteisessa avaruudessa. Kappaleidenpaikkojen määrittämiseen järjestelmä käyttää digitaalisia kuvia. Tässä työssä esiteltävässä harjoitustyötoteutuksessa käytettiin raja-arvoistusta HSV-väriavaruudessa kappaleiden segmentointiin kuvasta niiden värien perusteella. Segmentoinnin tuloksena saatavaa binäärikuvaa suodatettiin mediaanisuotimella kuvan häiriöiden poistamiseksi. Kappaleen paikkabinäärikuvassa määritettiin nimeämällä yhtenäisiä pikseliryhmiä yhtenäisen alueen nimeämismenetelmällä. Kappaleen paikaksi määritettiin suurimman nimetyn pikseliryhmän paikka. Kappaleiden paikat kuvassa yhdistettiin kolmiuloitteisiin koordinaatteihin kalibroidun kameran avulla. Järjestelmä liikutti kappaleita niiden arvioitujen kolmiuloitteisten paikkojen perusteella.
Resumo:
Simultaneous localization and mapping(SLAM) is a very important problem in mobile robotics. Many solutions have been proposed by different scientists during the last two decades, nevertheless few studies have considered the use of multiple sensors simultane¬ously. The solution is on combining several data sources with the aid of an Extended Kalman Filter (EKF). Two approaches are proposed. The first one is to use the ordinary EKF SLAM algorithm for each data source separately in parallel and then at the end of each step, fuse the results into one solution. Another proposed approach is the use of multiple data sources simultaneously in a single filter. The comparison of the computational com¬plexity of the two methods is also presented. The first method is almost four times faster than the second one.
Resumo:
Coverage Path Planning (CPP) is the task of determining a path that passes over all points of an area or volume of interest while avoiding obstacles. This task is integral to many robotic applications, such as vacuum cleaning robots, painter robots, autonomous underwater vehicles creating image mosaics, demining robots, lawn mowers, automated harvesters, window cleaners and inspection of complex structures, just to name a few. A considerable body of research has addressed the CPP problem. However, no updated surveys on CPP reflecting recent advances in the field have been presented in the past ten years. In this paper, we present a review of the most successful CPP methods, focusing on the achievements made in the past decade. Furthermore, we discuss reported field applications of the described CPP methods. This work aims to become a starting point for researchers who are initiating their endeavors in CPP. Likewise, this work aims to present a comprehensive review of the recent breakthroughs in the field, providing links to the most interesting and successful works
Resumo:
Editorial material
Resumo:
Parameters such as tolerance, scale and agility utilized in data sampling for using in Precision Agriculture required an expressive number of researches and development of techniques and instruments for automation. It is highlighted the employment of methodologies in remote sensing used in coupled to a Geographic Information System (GIS), adapted or developed for agricultural use. Aiming this, the application of Agricultural Mobile Robots is a strong tendency, mainly in the European Union, the USA and Japan. In Brazil, researches are necessary for the development of robotics platforms, serving as a basis for semi-autonomous and autonomous navigation systems. The aim of this work is to describe the project of an experimental platform for data acquisition in field for the study of the spatial variability and development of agricultural robotics technologies to operate in agricultural environments. The proposal is based on a systematization of scientific work to choose the design parameters utilized for the construction of the model. The kinematic study of the mechanical structure was made by the virtual prototyping process, based on modeling and simulating of the tension applied in frame, using the.
Resumo:
This work presents recent results concerning a design methodology used to estimate the positioning deviation for a gantry (Cartesian) manipulator, related mainly to structural elastic deformation of components during operational conditions. The case-study manipulator is classified as gantry type and its basic dimensions are 1,53m x 0,97m x 1,38m. The dimensions used for the calculation of effective workspace due to end-effector path displacement are: 1m x 0,5m x 0,5m. The manipulator is composed by four basic modules defined as module X, module Y, module Z and terminal arm, where is connected the end-effector. Each module controlled axis performs a linear-parabolic positioning movement. The planning path algorithm has the maximum velocity and the total distance as input parameters for a given task. The acceleration and deceleration times are the same. Denavit-Hartemberg parameterization method is used in the manipulator kinematics model. The gantry manipulator can be modeled as four rigid bodies with three degrees-of-freedom in translational movements, connected as an open kinematics chain. Dynamic analysis were performed considering inertial parameters specification such as component mass, inertia and center of gravity position of each module. These parameters are essential for a correct manipulator dynamic modelling, due to multiple possibilities of motion and manipulation of objects with different masses. The dynamic analysis consists of a mathematical modelling of the static and dynamic interactions among the modules. The computation of the structural deformations uses the finite element method (FEM).
Resumo:
This work presents a methodology for the development of Teleoperated Robotic Systems through the Internet. Initially, it is presented a bibliographical review of the Telerobotic systems that uses Internet as way of control. The methodology is implemented and tested through the development of two systems. The first is a manipulator with two degrees of freedom commanded remotely through the Internet denominated RobWebCam (http://www.graco.unb.br/robwebcam). The second is a system which teleoperates an ABB (Asea Brown Boveri) Industrial Robot of six degrees of freedom denominated RobWebLink (http://webrobot.graco.unb.br). RobWebCam is composed of a manipulator with two degrees of freedom, a video camera, Internet, computers and communication driver between the manipulator and the Unix system; and RobWebLink composed of the same components plus the Industrial Robot. With the use of this technology, it is possible to move far distant positioning objects minimizing transport costs, materials and people; acting in real time in the process that is wanted to be controller. This work demonstrates that the teleoperating via Internet of robotic systems and other equipments is viable, in spite of using rate transmission data with low bandwidth. Possible applications include remote surveillance, control and remote diagnosis and maintenance of machines and equipments.
Resumo:
Industrial applications demand that robots operate in agreement with the position and orientation of their end effector. It is necessary to solve the kinematics inverse problem. This allows the displacement of the joints of the manipulator to be determined, to accomplish a given objective. Complete studies of dynamical control of joint robotics are also necessary. Initially, this article focuses on the implementation of numerical algorithms for the solution of the kinematics inverse problem and the modeling and simulation of dynamic systems. This is done using real time implementation. The modeling and simulation of dynamic systems are performed emphasizing off-line programming. In sequence, a complete study of the control strategies is carried out through the study of several elements of a robotic joint, such as: DC motor, inertia, and gearbox. Finally a trajectory generator, used as input for a generic group of joints, is developed and a proposal of the controller's implementation of joints, using EPLD development system, is presented.
Resumo:
This work presents the implementation and comparison of three different techniques of three-dimensional computer vision as follows: • Stereo vision - correlation between two 2D images • Sensorial fusion - use of different sensors: camera 2D + ultrasound sensor (1D); • Structured light The computer vision techniques herein presented took into consideration the following characteristics: • Computational effort ( elapsed time for obtain the 3D information); • Influence of environmental conditions (noise due to a non uniform lighting, overlighting and shades); • The cost of the infrastructure for each technique; • Analysis of uncertainties, precision and accuracy. The option of using the Matlab software, version 5.1, for algorithm implementation of the three techniques was due to the simplicity of their commands, programming and debugging. Besides, this software is well known and used by the academic community, allowing the results of this work to be obtained and verified. Examples of three-dimensional vision applied to robotic assembling tasks ("pick-and-place") are presented.
Resumo:
In this paper, the optimum design of 3R manipulators is formulated and solved by using an algebraic formulation of workspace boundary. A manipulator design can be approached as a problem of optimization, in which the objective functions are the size of the manipulator and workspace volume; and the constrains can be given as a prescribed workspace volume. The numerical solution of the optimization problem is investigated by using two different numerical techniques, namely, sequential quadratic programming and simulated annealing. Numerical examples illustrate a design procedure and show the efficiency of the proposed algorithms.