986 resultados para 260603 Ionospheric and Magnetospheric Physics
Resumo:
Vol 1: 2d edition.
Resumo:
Albert Kahn, architect. Built 1924. East University on site of old medical building which was razed in 1914. Also called New Physics and East Physics.
Resumo:
Albert Kahn, architect. Built 1924. East University on site of old medical building which was razed in 1914. Also called New Physics and East Physics.
Resumo:
Albert Kahn, architect. Built 1924. East University on site of old medical building which was razed in 1914. Also called New Physics and East Physics.
Resumo:
Albert Kahn, architect. Built 1924. East University on site of old medical building which was razed in 1914. Also called New Physics and East Physics.
Resumo:
Albert Kahn, architect. Built 1924. East University on site of old medical building which was razed in 1914. Also called New Physics and East Physics.
Resumo:
Albert Kahn, architect. Built 1924. East University on site of old medical building which was razed in 1914. Also called New Physics and East Physics.
Resumo:
Albert Kahn, architect. Built 1924. East University on site of old medical building which was razed in 1914. Also called New Physics and East Physics.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
A set of varying-thickness Au-films were thermally evaporated onto poly(styrene-co-acrylonitrile) thin film surfaces. The Au/PSA bi-layer targets were then implanted with 50 keV N+ ions to a fluence of 1 × 1016 ions/cm2 to promote metal-to-polymer adhesion and to enhance their mechanical and electrical performance. Electrical conductivity measurements of the implanted Au/PSA thin films showed a sharp percolation behavior versus the pre-implant Au-film thickness with a percolation threshold near the nominal thickness of 44 Å. The electrical conductivity results are discussed along with the film microstructure and the elemental diffusion/mixing within the Au/PSA interface obtained by scanning electron microscopy (SEM) and ion beam analysis techniques (RBS and ERD).
Resumo:
We present a fully quantum mechanical treatment of the nondegenerate optical parametric oscillator both below and near threshold. This is a nonequilibrium quantum system with a critical point phase transition, that is also known to exhibit strong yet easily observed squeezing and quantum entanglement. Our treatment makes use of the positive P representation and goes beyond the usual linearized theory. We compare our analytical results with numerical simulations and find excellent agreement. We also carry out a detailed comparison of our results with those obtained from stochastic electrodynamics, a theory obtained by truncating the equation of motion for the Wigner function, with a view to locating regions of agreement and disagreement between the two. We calculate commonly used measures of quantum behavior including entanglement, squeezing, and Einstein-Podolsky-Rosen (EPR) correlations as well as higher order tripartite correlations, and show how these are modified as the critical point is approached. These results are compared with those obtained using two degenerate parametric oscillators, and we find that in the near-critical region the nondegenerate oscillator has stronger EPR correlations. In general, the critical fluctuations represent an ultimate limit to the possible entanglement that can be achieved in a nondegenerate parametric oscillator.
Resumo:
We analyze molecular bound states of atomic quantum gases near a Feshbach resonance. A simple, renormalizable field theoretic model is shown to have exact solutions in the two-body sector, whose binding energy agrees well with observed experimental results in both Bosonic and Fermionic cases. These solutions, which interpolate between BEC and BCS theories, also provide a more general variational ansatz for resonant superfluidity and related problems.
Resumo:
The monogamous nature of entanglement has been illustrated by the derivation of entanglement-sharing inequalities-bounds on the amount of entanglement that can be shared among the various parts of a multipartite system. Motivated by recent studies of decoherence, we demonstrate an interesting manifestation of this phenomena that arises in system-environment models where there exists interactions between the modes or subsystems of the environment. We investigate this phenomenon in the spin-bath environment, constructing an entanglement-sharing inequality bounding the entanglement between a central spin and the environment in terms of the pairwise entanglement between individual bath spins. The relation of this result to decoherence will be illustrated using simplified system-bath models of decoherence.
Resumo:
How does the classical phase-space structure for a composite system relate to the entanglement characteristics of the corresponding quantum system? We demonstrate how the entanglement in nonlinear bipartite systems can be associated with a fixed-point bifurcation in the classical dynamics. Using the example of coupled giant spins we show that when a fixed point undergoes a supercritical pitchfork bifurcation, the corresponding quantum state-the ground state-achieves its maximum amount of entanglement near the critical point. We conjecture that this will be a generic feature of systems whose classical limit exhibits such a bifurcation.
Resumo:
Typically linear optical quantum computing (LOQC) models assume that all input photons are completely indistinguishable. In practice there will inevitably be nonidealities associated with the photons and the experimental setup which will introduce a degree of distinguishability between photons. We consider a nondeterministic optical controlled-NOT gate, a fundamental LOQC gate, and examine the effect of temporal and spectral distinguishability on its operation. We also consider the effect of utilizing nonideal photon counters, which have finite bandwidth and time response.