897 resultados para 2447: modelling and forecasting
Resumo:
The thesis deals with some of the non-linear Gaussian and non-Gaussian time models and mainly concentrated in studying the properties and application of a first order autoregressive process with Cauchy marginal distribution. In this thesis some of the non-linear Gaussian and non-Gaussian time series models and mainly concentrated in studying the properties and application of a order autoregressive process with Cauchy marginal distribution. Time series relating to prices, consumptions, money in circulation, bank deposits and bank clearing, sales and profit in a departmental store, national income and foreign exchange reserves, prices and dividend of shares in a stock exchange etc. are examples of economic and business time series. The thesis discuses the application of a threshold autoregressive(TAR) model, try to fit this model to a time series data. Another important non-linear model is the ARCH model, and the third model is the TARCH model. The main objective here is to identify an appropriate model to a given set of data. The data considered are the daily coconut oil prices for a period of three years. Since it is a price data the consecutive prices may not be independent and hence a time series based model is more appropriate. In this study the properties like ergodicity, mixing property and time reversibility and also various estimation procedures used to estimate the unknown parameters of the process.
Resumo:
Department of Statistics, Cochin University of Science and Technology
Resumo:
Data centre is a centralized repository,either physical or virtual,for the storage,management and dissemination of data and information organized around a particular body and nerve centre of the present IT revolution.Data centre are expected to serve uniinterruptedly round the year enabling them to perform their functions,it consumes enormous energy in the present scenario.Tremendous growth in the demand from IT Industry made it customary to develop newer technologies for the better operation of data centre.Energy conservation activities in data centre mainly concentrate on the air conditioning system since it is the major mechanical sub-system which consumes considerable share of the total power consumption of the data centre.The data centre energy matrix is best represented by power utilization efficiency(PUE),which is defined as the ratio of the total facility power to the IT equipment power.Its value will be greater than one and a large value of PUE indicates that the sub-systems draw more power from the facility and the performance of the data will be poor from the stand point of energy conservation. PUE values of 1.4 to 1.6 are acievable by proper design and management techniques.Optimizing the air conditioning systems brings enormous opportunity in bringing down the PUE value.The air conditioning system can be optimized by two approaches namely,thermal management and air flow management.thermal management systems are now introduced by some companies but they are highly sophisticated and costly and do not catch much attention in the thumb rules.
Resumo:
This thesis Entitled “modelling and analysis of recurrent event data with multiple causes.Survival data is a term used for describing data that measures the time to occurrence of an event.In survival studies, the time to occurrence of an event is generally referred to as lifetime.Recurrent event data are commonly encountered in longitudinal studies when individuals are followed to observe the repeated occurrences of certain events. In many practical situations, individuals under study are exposed to the failure due to more than one causes and the eventual failure can be attributed to exactly one of these causes.The proposed model was useful in real life situations to study the effect of covariates on recurrences of certain events due to different causes.In Chapter 3, an additive hazards model for gap time distributions of recurrent event data with multiple causes was introduced. The parameter estimation and asymptotic properties were discussed .In Chapter 4, a shared frailty model for the analysis of bivariate competing risks data was presented and the estimation procedures for shared gamma frailty model, without covariates and with covariates, using EM algorithm were discussed. In Chapter 6, two nonparametric estimators for bivariate survivor function of paired recurrent event data were developed. The asymptotic properties of the estimators were studied. The proposed estimators were applied to a real life data set. Simulation studies were carried out to find the efficiency of the proposed estimators.
Resumo:
This work identifies the importance of plenum pressure on the performance of the data centre. The present methodology followed in the industry considers the pressure drop across the tile as a dependant variable, but it is shown in this work that this is the only one independent variable that is responsible for the entire flow dynamics in the data centre, and any design or assessment procedure must consider the pressure difference across the tile as the primary independent variable. This concept is further explained by the studies on the effect of dampers on the flow characteristics. The dampers have found to introduce an additional pressure drop there by reducing the effective pressure drop across the tile. The effect of damper is to change the flow both in quantitative and qualitative aspects. But the effect of damper on the flow in the quantitative aspect is only considered while using the damper as an aid for capacity control. Results from the present study suggest that the use of dampers must be avoided in data centre and well designed tiles which give required flow rates must be used in the appropriate locations. In the present study the effect of hot air recirculation is studied with suitable assumptions. It identifies that, the pressure drop across the tile is a dominant parameter which governs the recirculation. The rack suction pressure of the hardware along with the pressure drop across the tile determines the point of recirculation in the cold aisle. The positioning of hardware in the racks play an important role in controlling the recirculation point. The present study is thus helpful in the design of data centre air flow, based on the theory of jets. The air flow can be modelled both quantitatively and qualitatively based on the results.
Resumo:
In the present study the effect of hot air recirculation is studied with suitable assumptions. It identifies that, the pressure drop across the tile is a dominant parameter which governs the recirculation. The rack suction pressure of the hardware along with the pressure drop across the tile determines the point of recirculation in the cold aisle. The positioning of hardware in the racks play an important role in controlling the recirculation point. The present study is thus helpful in the design of data centre air flow, based on the theory of jets. The air flow can be modelled both quantitatively and qualitatively based on the results
Resumo:
Cement industry ranks 2nd in energy consumption among the industries in India. It is one of the major emitter of CO2, due to combustion of fossil fuel and calcination process. As the huge amount of CO2 emissions cause severe environment problems, the efficient and effective utilization of energy is a major concern in Indian cement industry. The main objective of the research work is to assess the energy cosumption and energy conservation of the Indian cement industry and to predict future trends in cement production and reduction of CO2 emissions. In order to achieve this objective, a detailed energy and exergy analysis of a typical cement plant in Kerala was carried out. The data on fuel usage, electricity consumption, amount of clinker and cement production were also collected from a few selected cement industries in India for the period 2001 - 2010 and the CO2 emissions were estimated. A complete decomposition method was used for the analysis of change in CO2 emissions during the period 2001 - 2010 by categorising the cement industries according to the specific thermal energy consumption. A basic forecasting model for the cement production trend was developed by using the system dynamic approach and the model was validated with the data collected from the selected cement industries. The cement production and CO2 emissions from the industries were also predicted with the base year as 2010. The sensitivity analysis of the forecasting model was conducted and found satisfactory. The model was then modified for the total cement production in India to predict the cement production and CO2 emissions for the next 21 years under three different scenarios. The parmeters that influence CO2 emissions like population and GDP growth rate, demand of cement and its production, clinker consumption and energy utilization are incorporated in these scenarios. The existing growth rate of the population and cement production in the year 2010 were used in the baseline scenario. In the scenario-1 (S1) the growth rate of population was assumed to be gradually decreasing and finally reach zero by the year 2030, while in scenario-2 (S2) a faster decline in the growth rate was assumed such that zero growth rate is achieved in the year 2020. The mitigation strategiesfor the reduction of CO2 emissions from the cement production were identified and analyzed in the energy management scenarioThe energy and exergy analysis of the raw mill of the cement plant revealed that the exergy utilization was worse than energy utilization. The energy analysis of the kiln system showed that around 38% of heat energy is wasted through exhaust gases of the preheater and cooler of the kiln sysetm. This could be recovered by the waste heat recovery system. A secondary insulation shell was also recommended for the kiln in the plant in order to prevent heat loss and enhance the efficiency of the plant. The decomposition analysis of the change in CO2 emissions during 2001- 2010 showed that the activity effect was the main factor for CO2 emissions for the cement industries since it is directly dependent on economic growth of the country. The forecasting model showed that 15.22% and 29.44% of CO2 emissions reduction can be achieved by the year 2030 in scenario- (S1) and scenario-2 (S2) respectively. In analysing the energy management scenario, it was assumed that 25% of electrical energy supply to the cement plants is replaced by renewable energy. The analysis revealed that the recovery of waste heat and the use of renewable energy could lead to decline in CO2 emissions 7.1% for baseline scenario, 10.9 % in scenario-1 (S1) and 11.16% in scenario-2 (S2) in 2030. The combined scenario considering population stabilization by the year 2020, 25% of contribution from renewable energy sources of the cement industry and 38% thermal energy from the waste heat streams shows that CO2 emissions from Indian cement industry could be reduced by nearly 37% in the year 2030. This would reduce a substantial level of greenhouse gas load to the environment. The cement industry will remain one of the critical sectors for India to meet its CO2 emissions reduction target. India’s cement production will continue to grow in the near future due to its GDP growth. The control of population, improvement in plant efficiency and use of renewable energy are the important options for the mitigation of CO2 emissions from Indian cement industries
Resumo:
A stand-alone power system is an autonomous system that supplies electricity to the user load without being connected to the electric grid. This kind of decentralized system is frequently located in remote and inaccessible areas. It is essential for about one third of the world population which are living in developed or isolated regions and have no access to an electricity utility grid. The most people live in remote and rural areas, with low population density, lacking even the basic infrastructure. The utility grid extension to these locations is not a cost effective option and sometimes technically not feasible. The purpose of this thesis is the modelling and simulation of a stand-alone hybrid power system, referred to as “hydrogen Photovoltaic-Fuel Cell (PVFC) hybrid system”. It couples a photovoltaic generator (PV), an alkaline water electrolyser, a storage gas tank, a proton exchange membrane fuel cell (PEMFC), and power conditioning units (PCU) to give different system topologies. The system is intended to be an environmentally friendly solution since it tries maximising the use of a renewable energy source. Electricity is produced by a PV generator to meet the requirements of a user load. Whenever there is enough solar radiation, the user load can be powered totally by the PV electricity. During periods of low solar radiation, auxiliary electricity is required. An alkaline high pressure water electrolyser is powered by the excess energy from the PV generator to produce hydrogen and oxygen at a pressure of maximum 30bar. Gases are stored without compression for short- (hourly or daily) and long- (seasonal) term. A proton exchange membrane (PEM) fuel cell is used to keep the system’s reliability at the same level as for the conventional system while decreasing the environmental impact of the whole system. The PEM fuel cell consumes gases which are produced by an electrolyser to meet the user load demand when the PV generator energy is deficient, so that it works as an auxiliary generator. Power conditioning units are appropriate for the conversion and dispatch the energy between the components of the system. No batteries are used in this system since they represent the weakest when used in PV systems due to their need for sophisticated control and their short lifetime. The model library, ISET Alternative Power Library (ISET-APL), is designed by the Institute of Solar Energy supply Technology (ISET) and used for the simulation of the hybrid system. The physical, analytical and/or empirical equations of each component are programmed and implemented separately in this library for the simulation software program Simplorer by C++ language. The model parameters are derived from manufacturer’s performance data sheets or measurements obtained from literature. The identification and validation of the major hydrogen PVFC hybrid system component models are evaluated according to the measured data of the components, from the manufacturer’s data sheet or from actual system operation. Then, the overall system is simulated, at intervals of one hour each, by using solar radiation as the primary energy input and hydrogen as energy storage for one year operation. A comparison between different topologies, such as DC or AC coupled systems, is carried out on the basis of energy point of view at two locations with different geographical latitudes, in Kassel/Germany (Europe) and in Cairo/Egypt (North Africa). The main conclusion in this work is that the simulation method of the system study under different conditions could successfully be used to give good visualization and comparison between those topologies for the overall performance of the system. The operational performance of the system is not only depending on component efficiency but also on system design and consumption behaviour. The worst case of this system is the low efficiency of the storage subsystem made of the electrolyser, the gas storage tank, and the fuel cell as it is around 25-34% at Cairo and 29-37% at Kassel. Therefore, the research for this system should be concentrated in the subsystem components development especially the fuel cell.
Resumo:
In this paper we use the most representative models that exist in the literature on term structure of interest rates. In particular, we explore affine one factor models and polynomial-type approximations such as Nelson and Siegel. Our empirical application considers monthly data of USA and Colombia for estimation and forecasting. We find that affine models do not provide adequate performance either in-sample or out-of-sample. On the contrary, parsimonious models such as Nelson and Siegel have adequate results in-sample, however out-of-sample they are not able to systematically improve upon random walk base forecast.
Resumo:
The activated sludge and anaerobic digestion processes have been modelled in widely accepted models. Nevertheless, these models still have limitations when describing operational problems of microbiological origin. The aim of this thesis is to develop a knowledge-based model to simulate risk of plant-wide operational problems of microbiological origin.For the risk model heuristic knowledge from experts and literature was implemented in a rule-based system. Using fuzzy logic, the system can infer a risk index for the main operational problems of microbiological origin (i.e. filamentous bulking, biological foaming, rising sludge and deflocculation). To show the results of the risk model, it was implemented in the Benchmark Simulation Models. This allowed to study the risk model's response in different scenarios and control strategies. The risk model has shown to be really useful providing a third criterion to evaluate control strategies apart from the economical and environmental criteria.
Resumo:
Rising nitrate levels have been observed in UK Chalk catchments in recent decades, with concentrations now approaching or exceeding legislated maximum values in many areas. In response, strategies seeking to contain concentrations through appropriate land management are now in place. However, there is an increasing consensus that Chalk systems, a predominant landscape type over England and indeed northwest Europe, can retard decades of prior nitrate loading within their deep unsaturated zones. Current levels may not fully reflect the long-term impact of present-day practices, and stringent land management controls may not be enough to avert further medium-term rises. This paper discusses these issues in the context of the EU Water Framework Directive, drawing on data from recent experimental work and a new model (INCA-Chalk) that allows the impacts of different land use management practices to be explored. Results strongly imply that timelines for water quality improvement demanded by the Water Framework directive are not realistic for the Chalk, and give an indication of time-scales over which improvements might be achieved. However, important unresolved scientific issues remain, and further monitoring and targeted data collection is recommended to reduce prediction uncertainties and allow cost effective strategies for mitigation to be designed and implemented. (C) 2007 Elsevier Ltd. All rights reserved.