989 resultados para 1995_01232348 TM-45 4302103


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we show that a multilayer freestanding slot array can be designed to give an insertion loss which is significantly lower than the value obtainable from a conventional dielectric backed printed frequency selective surface (FSS). This increase in filter efficiency is highlighted by comparing the performance of two structures designed to provide frequency selective beamsplitting in the quasioptical feed train of a submillimeter wave space borne radiometer. A two layer substrateless FSS providing more than 20 dB of isolation between the bands 316.5â??325.5 GHz and 349.5â??358.5 GHz, gives an insertion loss of 0.6 dB when the filter is orientated at 45 incidence in the TM plane, whereas the loss exhibited by a conventional printed FSS is in excess of 2 dB. A similar frequency response can be obtained in the TE plane, but here a triple screen structure is required and the conductor loss is shown to be comparable to the absorption loss of a dielectric backed FSS. Experimental devices have been fabricated using a precision micromachining technique. Transmission measurements performed in the range 250â??360 GHz are in good agreement with the simulated spectral performance of the individual periodic screens and the two multilayer freestanding FSS structures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on a study comparing absolute K-alpha yield from Ti foils measured with a calibrated system of an X-ray CCD coupled to a curved LiF Von-Hamos crystal spectrometer to the difference in the signals measured simultaneously with two similar photodiodes fitted with two different filters. Our data indicate that a combination of photodiodes with different filters could be developed into an alternative and inexpensive diagnostic for monitoring single shot pulsed emission in a narrow band of X-ray region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is shown that a side-fed bifilar helix antenna with a single feed, can generate a slant 451 linearly polarized onmidirectional toroidal pattern. The antenna has a low profile and does not require a ground plane. The bifilar helix antenna provides slant 45 degrees polarization over a solid angle of almost 4 pi steradians as compared to a crossed dipole which generates a tilted 45 degrees linearly, polarized pattern only over a solid angle of 1.14 pi steradians. The computed results are validated by experimental data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The spectral transmittance of a frequency selective surface (FSS), which consists of two free-standing arrays of short-circuited nested annular slots, is presented. The FSS was designed to provide a minimum of 20 dB isolation between the frequency bands 316.5-325.5 and 349.5-358.5 GHz when the filter operates in the TE and TM planes at 45 degrees incidence. Experimental results, which are in close agreement with the computed transmission coefficients, show that the maximum insertion loss is 0.9 dB, and the minimum cross-polar discrimination is at least 21 dB in the passbands. The FSS yields virtually identical spectral responses in the two polarisation planes over the frequency range 315-359 GHz.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The design of a quasi-optical single sideband filter, which provides more than 30 dB of isolation between the frequency bands 294-305.5 and 329.5-341.5 GHz in the TM plane at 45 degrees incidence, is described. The structure, which consists of three free-standing arrays of dipole slot elements, generates a bandpass spectral response with an insertion loss below 0.5 dB at resonance. Simulated and measured transmission coefficients in the range 250-400 GHz are shown to be in good agreement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bodyworn antennas are found in a wide range of medical, military and personal communication applications, yet reliable communication from the surface of the human body still presents a range of engineering challenges. At UHF and microwave frequencies, bodyworn antennas can suffer from reduced efficiency due to electromagnetic absorption in tissue, radiation pattern fragmentation and variations in feed-point impedance. The significance and nature of these effects are system specific and depend on the operating frequency, propagation environment and physical constraints on the antenna itself. This paper describes how numerical electromagnetic modelling techniques such as FDTD (finite-difference time-domain) can be used in the design of bodyworn antennas. Examples are presented for 418 MHz, 916 .5 MHz and 2 . 45 GHz, in the context of both biomedical signalling and wireless personal-area networking applications such as the Bluetooth(TM)* wireless technology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports the design, construction and electromagnetic performance of a new freestanding frequency selective surface (FSS) structure which generates coincident spectral responses for dual polarisation excitation at oblique angles of incidence. The FSS is required to allow transmission of 316.5 - 325.5 GHz radiation with a loss = 0.6 dB and to achieve = 30 dB rejection from 349.5 - 358.5 GHz. It should also exhibit crosspolarisation levels below -25 dB, all criteria being satisfied simultaneously for TE and TM polarisations at 45° incidence. The filter consists of two identical, 30 mm diameter, 12.5 ?m thick, optically flat, perforated metal screens separated by 450 ?m. Each of the ˜5000 unit cells contains two nested, short circuited, rectangular loop slots and a rectangular dipole slot. The nested elements provide a passband spectral response centred at 320 GHz in the TE and TM planes; the dipole slot increases the filter roll-off above resonance. The FSS was fabricated from silicon-on-insulator wafers using precision micromachining and plating processes including the use of Deep Reactive Ion Etching (DRIE) to pattern the individual slots and remove the substrate under the periodic arrays. Quasi–optical transmission measurements in the 250 – 360 GHz range yielded virtually identical copolarised spectral responses, with the performance meeting or exceeding the above specifications. Experimental results are in excellent agreement with numerical predictions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, the on-body performance of a range of wearable antennas was investigated by measuring vertical bar S-21 vertical bar path gain between two devices mounted on tissue-equivalent numerical and experimental phantoms, representative of human muscle tissue at 2.45 GHz. In particular, the study focused on the performance of a compact higher mode microstrip patch antenna (HMMPA) with a profile as low as lambda/20. The 5- and 10-mm-high HMMPA prototypes had an impedance bandwidth of 6.7% and 8.6%, respectively, sufficient for the operating requirements of the 2.45-GHz industrial, scientific, and medical (ISM) band and both antennas offered 11-dB higher path gain compared to a fundamental-mode microstrip patch antenna. It was also dernonstrated that a 7-dB improvement in path gain can be obtained for a fundamental-mode patch through the addition of a shortening wall. Notably, on-body HMMPA performance was comparable to a quarter wave monopole antenna on the same size of ground-plane, mounted normal to the tissue surface, indicating that the low-profile and physically more robust antenna is a promising solution for bodyworn antenna applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Modeling of on-body propagation channels is of paramount importance to those wishing to evaluate radio channel performance for wearable devices in body area networks (BANs). Difficulties in modeling arise due to the highly variable channel conditions related to changes in the user's state and local environment. This study characterizes these influences by using time-series analysis to examine and model signal characteristics for on-body radio channels in user stationary and mobile scenarios in four different locations: anechoic chamber, open office area, hallway, and outdoor environment. Autocorrelation and cross-correlation functions are reported and shown to be dependent on body state and surroundings. Autoregressive (AR) transfer functions are used to perform time-series analysis and develop models for fading in various on-body links. Due to the non-Gaussian nature of the logarithmically transformed observed signal envelope in the majority of mobile user states, a simple method for reproducing the failing based on lognormal and Nakagami statistics is proposed. The validity of the AR models is evaluated using hypothesis testing, which is based on the Ljung-Box statistic, and the estimated distributional parameters of the simulator output compared with those from experimental results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using seven strategically placed, time-synchronized bodyworn receivers covering the head, upper front and back torso, and the limbs, we have investigated the effect of user state: stationary or mobile and local environment: anechoic chamber, open office area and hallway upon first and second order statistics for on-body fading channels. Three candidate models were considered: Nakagami, Rice and lognormal. Using maximum likelihood estimation and the Akaike information criterion it was established that the Nakagami-m distribution best described small-scale fading for the majority of on-body channels over all the measurement scenarios. When the user was stationary, Nakagami-m parameters were found to be much greater than 1, irrespective of local surroundings. For mobile channels, Nakagami-m parameters significantly decreased, with channels in the open office area and hallway experiencing the worst fading conditions.