1000 resultados para 13-127A
Resumo:
利用在束γ谱学技术,通过反应144Sm(16O,3n)研究了157Yb的高自旋态,其中16O束流的能量为90MeV.采用门套BGO(AC)HPGe探测器进行了长时间的γ-γ-t符合测量.基于γ-γ符合关系、γ射线的各向异性度和DCO系数的测量结果,首次建立了157Yb的高自旋能级纲图.围绕157Yb的能级纲图着重讨论了此核的形状共存和Vi13/2能带随着角动量增加的结构演变,另外还比较了N=87同中子素链的Vi13/2转动带结构的系统性.
Resumo:
利用能量为60-80MeV的~(12)C束流,通过~197An(~(12)C,3n)~206At反应研究了~206At核的高自旋能级结构.用7台BGO(AC)HPGe探测器和一台用于探测低能γ射线的平面型HPGe探测器进行了γ射线的激发函数、γ-γ-t符合及γ射线的角分布测量.基于这些测量,首次建立了包括25条γ跃迁的~206At高自旋能级纲图.确定了一个半寿命为(908±400)ns、自旋和宇称为10的同质异能态.基于较重的双奇核~(208,210 )At能级结构的系统性,对~(206)At的10~-同质异能态进行了讨论.
Resumo:
Search for low-spin signature inversion in the pi i(13/2) circle times nu i(13/2) bands in odd-odd Au-182,Au-184,Au-186 has been conducted through the standard in-beam gamma-spectroscopy techniques. The experiments for Au-182 and 186Au have been performed in the Japan Atomic Energy Agency (JAEA) via the Sm-152(Cl-35,5n)Au-182 and Yb-172(F-19,5n)Au-186 reactions, respectively. A study of Au-184 has been made using a multi-detector array GASP in LNL, Italy, via the Tb-159(Si-29,4n)Au-184 reaction. The pi i(13/2) circle times nu i(13/2) bands in these three nuclei have been identified and extended up to high-spin states. In particular, the inter-band connection between the pi i(13/2) nu i(13/2) band and the ground-state band in 184 Au has been established, leading to a firm spin-and-parity assignment for the pi i(13/2) circle times nu i(13/2) band. The low-spin signature inversion is found in the pi i(13/2) circle times nu i(13/2) bands in Au-182,Au-184,Au-186 according to our spin-assignment and the signature crossing observed at high-spin states.
Resumo:
The relative partial cross sections for C-13(6+)-Ar collisions at 4.15-11.08 keV/u incident energy are measured. The cross-section ratios sigma(2E)/sigma(SC), sigma(3E)/sigma(SC), sigma(4E)/sigma(SC) and sigma(5E)/sigma(SC) are approximately the constants of 0.51 +/- 0.05, 0.20 +/- 0.03, 0.06 +/- 0.03 and 0.02 +/- 0.01 in this region. The significance of the multi-electron process in highly charged ions (HCIs) with argon collisions is demonstrated (sigma(ME)/sigma(SC) as high as 0.79 +/- 0.06). In multi-electron processes, it is shown that transfer ionization is dominant while pure electron capture is weak and negligible. For all reaction channels, the cross-sections are independent of the incident energy in the present energy region, which is in agreement with the static characteristic of classic models, i.e. the molecular Coulomb over-the-barrier model (MCBM), the extended classical over-the-barrier (ECBM) and the semiempirical scaling laws (SL). The result is compared with these classical models and with our previous work of C-13(6+)-Ne collisions
Resumo:
Search for low-spin signature inversion in the pi i(13/2) circle times nu i(13/2) bands in odd-odd Au-182,Au-184,Au-186 has been conducted through the standard in-beam gamma-spectroscopy techniques via the Sm-152(Cl-35,5n) Au-182, Yb-172(F-19,5n) (186)An, and Tb-159(Si-29,4n) (184)An reactions, respectively. The pi i(13/2) circle times nu i(13/2) bands in these three nuclei have been identified and extended up to high-spin states. In particular, the inter-band connection between the pi i(13/2) circle times nu i(13/2) band and the ground-state band in Au-184 has been established, leading to a firm spin-and-parity assignment for the pi i(13/2) circle times nu i(13/2) band. The low-spin signature inversion is found in the pi i(13/2) circle times nu i(13/2) bands according to our spin-assignment and-the signature crossing observed at high-spin states.
Resumo:
Excited states in Tl-188,Tl-190 have been studied experimentally by means of in-beam gamma spectroscopy techniques, and resulted in the identification of a strongly coupled band based on the pi h(9/2) circle times nu i(13/2) configuration with oblate deformation. The oblate band in doubly odd Tl nuclei shows low-spin signature inversion. It is the first experimental observation of low-spin signature inversion for a band associated with the oblate pi h(9/2) circle times nu i(13/2) configuration.
Resumo:
Excited states in Tl-188 have been studied experimentally using the Gd-157(Cl-35;4n) reaction at a beam energy of 170 MeV. A rotational band built on the pi h(9/2) x nu i(13/2) configuration with oblate deformation has been established for Tl-188. Based on the structure systematics of the oblate pi h(9/2) x nu i(13/2) bands in the heavier odd-odd Tl nuclei, we have tentatively proposed spin values for the new band in Tl-188. The pi h(9/2) x nu i(13/2) oblate band in Tl-188 shows low-spin signature inversion, and it can be interpreted qualitatively by the two-quasiparticle plus rotor model including a J-dependent p-n residual interaction.
Resumo:
High spin states in Tl-188 have been investigated via the Gd-157(Cl-35,4n) reaction at beam energy of 170 MeV. A rotational band built on the pi h(9/2) circle times nu(13/2) configuration with oblate deformation has been established. Considering the similarity between the band structure observed in odd-odd Tl nuclei, spin values have been tentatively proposed for the new band in Tl-188. The pi h(9/2) circle times nu(13/2) oblate band in Tl-188 shows low-spin signature inversion, and it can be interpreted qualitatively by the two quasiparticle plus rotor model including a J-dependent p-n residual interaction.
Resumo:
High-spin Level structure of Tl-188 has been studied via Gd-157 (Cl-35,4n) fusion-evaporation reaction at beam energy of 170MeV. A rotational band built on the pi h(9/2) circle times nu i(13/2) configuration with oblate deformation has been established. Spin values have been proposed to the pi h(9/2) circle times nu i(13/2) oblate band based on the similarities between the oblate band of Tl-188 and those in odd-odd Tl190-200. With the spin assignments, the low-spin signature inversion has been revealed for the pi h(9/2) circle times nu i(13/2) oblate band of Tl-188. The low-spin signature inversion can be interpreted qualitatively in the framework of the quasi-particles plus rotor model including a J dependent p-n residual interaction.